This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree of a graph with one hyperedge, case 3: an edge from some other vertex to the given vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 23-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1hegrvtxdg1.a | |- ( ph -> A e. X ) |
|
| 1hegrvtxdg1.b | |- ( ph -> B e. V ) |
||
| 1hegrvtxdg1.c | |- ( ph -> C e. V ) |
||
| 1hegrvtxdg1.n | |- ( ph -> B =/= C ) |
||
| 1hegrvtxdg1.x | |- ( ph -> E e. ~P V ) |
||
| 1hegrvtxdg1.i | |- ( ph -> ( iEdg ` G ) = { <. A , E >. } ) |
||
| 1hegrvtxdg1.e | |- ( ph -> { B , C } C_ E ) |
||
| 1hegrvtxdg1.v | |- ( ph -> ( Vtx ` G ) = V ) |
||
| Assertion | 1hegrvtxdg1r | |- ( ph -> ( ( VtxDeg ` G ) ` C ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1hegrvtxdg1.a | |- ( ph -> A e. X ) |
|
| 2 | 1hegrvtxdg1.b | |- ( ph -> B e. V ) |
|
| 3 | 1hegrvtxdg1.c | |- ( ph -> C e. V ) |
|
| 4 | 1hegrvtxdg1.n | |- ( ph -> B =/= C ) |
|
| 5 | 1hegrvtxdg1.x | |- ( ph -> E e. ~P V ) |
|
| 6 | 1hegrvtxdg1.i | |- ( ph -> ( iEdg ` G ) = { <. A , E >. } ) |
|
| 7 | 1hegrvtxdg1.e | |- ( ph -> { B , C } C_ E ) |
|
| 8 | 1hegrvtxdg1.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 9 | 4 | necomd | |- ( ph -> C =/= B ) |
| 10 | prcom | |- { C , B } = { B , C } |
|
| 11 | 10 7 | eqsstrid | |- ( ph -> { C , B } C_ E ) |
| 12 | 1 3 2 9 5 6 11 8 | 1hegrvtxdg1 | |- ( ph -> ( ( VtxDeg ` G ) ` C ) = 1 ) |