This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for trlsegvdeg . (Contributed by AV, 20-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trlsegvdeg.v | |- V = ( Vtx ` G ) |
|
| trlsegvdeg.i | |- I = ( iEdg ` G ) |
||
| trlsegvdeg.f | |- ( ph -> Fun I ) |
||
| trlsegvdeg.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
||
| trlsegvdeg.u | |- ( ph -> U e. V ) |
||
| trlsegvdeg.w | |- ( ph -> F ( Trails ` G ) P ) |
||
| Assertion | trlsegvdeglem1 | |- ( ph -> ( ( P ` N ) e. V /\ ( P ` ( N + 1 ) ) e. V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.v | |- V = ( Vtx ` G ) |
|
| 2 | trlsegvdeg.i | |- I = ( iEdg ` G ) |
|
| 3 | trlsegvdeg.f | |- ( ph -> Fun I ) |
|
| 4 | trlsegvdeg.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
|
| 5 | trlsegvdeg.u | |- ( ph -> U e. V ) |
|
| 6 | trlsegvdeg.w | |- ( ph -> F ( Trails ` G ) P ) |
|
| 7 | trliswlk | |- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
|
| 8 | 1 | wlkpvtx | |- ( F ( Walks ` G ) P -> ( N e. ( 0 ... ( # ` F ) ) -> ( P ` N ) e. V ) ) |
| 9 | elfzofz | |- ( N e. ( 0 ..^ ( # ` F ) ) -> N e. ( 0 ... ( # ` F ) ) ) |
|
| 10 | 8 9 | impel | |- ( ( F ( Walks ` G ) P /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` N ) e. V ) |
| 11 | 1 | wlkpvtx | |- ( F ( Walks ` G ) P -> ( ( N + 1 ) e. ( 0 ... ( # ` F ) ) -> ( P ` ( N + 1 ) ) e. V ) ) |
| 12 | fzofzp1 | |- ( N e. ( 0 ..^ ( # ` F ) ) -> ( N + 1 ) e. ( 0 ... ( # ` F ) ) ) |
|
| 13 | 11 12 | impel | |- ( ( F ( Walks ` G ) P /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` ( N + 1 ) ) e. V ) |
| 14 | 10 13 | jca | |- ( ( F ( Walks ` G ) P /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( P ` N ) e. V /\ ( P ` ( N + 1 ) ) e. V ) ) |
| 15 | 14 | ex | |- ( F ( Walks ` G ) P -> ( N e. ( 0 ..^ ( # ` F ) ) -> ( ( P ` N ) e. V /\ ( P ` ( N + 1 ) ) e. V ) ) ) |
| 16 | 6 7 15 | 3syl | |- ( ph -> ( N e. ( 0 ..^ ( # ` F ) ) -> ( ( P ` N ) e. V /\ ( P ` ( N + 1 ) ) e. V ) ) ) |
| 17 | 4 16 | mpd | |- ( ph -> ( ( P ` N ) e. V /\ ( P ` ( N + 1 ) ) e. V ) ) |