This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eupth2lem2.1 | |- B e. _V |
|
| Assertion | eupth2lem2 | |- ( ( B =/= C /\ B = U ) -> ( -. U e. if ( A = B , (/) , { A , B } ) <-> U e. if ( A = C , (/) , { A , C } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupth2lem2.1 | |- B e. _V |
|
| 2 | eqidd | |- ( ( B =/= C /\ B = U ) -> B = B ) |
|
| 3 | 2 | olcd | |- ( ( B =/= C /\ B = U ) -> ( B = A \/ B = B ) ) |
| 4 | 3 | biantrud | |- ( ( B =/= C /\ B = U ) -> ( A =/= B <-> ( A =/= B /\ ( B = A \/ B = B ) ) ) ) |
| 5 | eupth2lem1 | |- ( B e. _V -> ( B e. if ( A = B , (/) , { A , B } ) <-> ( A =/= B /\ ( B = A \/ B = B ) ) ) ) |
|
| 6 | 1 5 | ax-mp | |- ( B e. if ( A = B , (/) , { A , B } ) <-> ( A =/= B /\ ( B = A \/ B = B ) ) ) |
| 7 | 4 6 | bitr4di | |- ( ( B =/= C /\ B = U ) -> ( A =/= B <-> B e. if ( A = B , (/) , { A , B } ) ) ) |
| 8 | simpr | |- ( ( B =/= C /\ B = U ) -> B = U ) |
|
| 9 | 8 | eleq1d | |- ( ( B =/= C /\ B = U ) -> ( B e. if ( A = B , (/) , { A , B } ) <-> U e. if ( A = B , (/) , { A , B } ) ) ) |
| 10 | 7 9 | bitrd | |- ( ( B =/= C /\ B = U ) -> ( A =/= B <-> U e. if ( A = B , (/) , { A , B } ) ) ) |
| 11 | 10 | necon1bbid | |- ( ( B =/= C /\ B = U ) -> ( -. U e. if ( A = B , (/) , { A , B } ) <-> A = B ) ) |
| 12 | simpl | |- ( ( B =/= C /\ B = U ) -> B =/= C ) |
|
| 13 | neeq1 | |- ( B = A -> ( B =/= C <-> A =/= C ) ) |
|
| 14 | 12 13 | syl5ibcom | |- ( ( B =/= C /\ B = U ) -> ( B = A -> A =/= C ) ) |
| 15 | 14 | pm4.71rd | |- ( ( B =/= C /\ B = U ) -> ( B = A <-> ( A =/= C /\ B = A ) ) ) |
| 16 | eqcom | |- ( A = B <-> B = A ) |
|
| 17 | ancom | |- ( ( B = A /\ A =/= C ) <-> ( A =/= C /\ B = A ) ) |
|
| 18 | 15 16 17 | 3bitr4g | |- ( ( B =/= C /\ B = U ) -> ( A = B <-> ( B = A /\ A =/= C ) ) ) |
| 19 | 12 | neneqd | |- ( ( B =/= C /\ B = U ) -> -. B = C ) |
| 20 | biorf | |- ( -. B = C -> ( B = A <-> ( B = C \/ B = A ) ) ) |
|
| 21 | 19 20 | syl | |- ( ( B =/= C /\ B = U ) -> ( B = A <-> ( B = C \/ B = A ) ) ) |
| 22 | orcom | |- ( ( B = C \/ B = A ) <-> ( B = A \/ B = C ) ) |
|
| 23 | 21 22 | bitrdi | |- ( ( B =/= C /\ B = U ) -> ( B = A <-> ( B = A \/ B = C ) ) ) |
| 24 | 23 | anbi1d | |- ( ( B =/= C /\ B = U ) -> ( ( B = A /\ A =/= C ) <-> ( ( B = A \/ B = C ) /\ A =/= C ) ) ) |
| 25 | 18 24 | bitrd | |- ( ( B =/= C /\ B = U ) -> ( A = B <-> ( ( B = A \/ B = C ) /\ A =/= C ) ) ) |
| 26 | ancom | |- ( ( A =/= C /\ ( B = A \/ B = C ) ) <-> ( ( B = A \/ B = C ) /\ A =/= C ) ) |
|
| 27 | 25 26 | bitr4di | |- ( ( B =/= C /\ B = U ) -> ( A = B <-> ( A =/= C /\ ( B = A \/ B = C ) ) ) ) |
| 28 | eupth2lem1 | |- ( B e. _V -> ( B e. if ( A = C , (/) , { A , C } ) <-> ( A =/= C /\ ( B = A \/ B = C ) ) ) ) |
|
| 29 | 1 28 | ax-mp | |- ( B e. if ( A = C , (/) , { A , C } ) <-> ( A =/= C /\ ( B = A \/ B = C ) ) ) |
| 30 | 8 | eleq1d | |- ( ( B =/= C /\ B = U ) -> ( B e. if ( A = C , (/) , { A , C } ) <-> U e. if ( A = C , (/) , { A , C } ) ) ) |
| 31 | 29 30 | bitr3id | |- ( ( B =/= C /\ B = U ) -> ( ( A =/= C /\ ( B = A \/ B = C ) ) <-> U e. if ( A = C , (/) , { A , C } ) ) ) |
| 32 | 11 27 31 | 3bitrd | |- ( ( B =/= C /\ B = U ) -> ( -. U e. if ( A = B , (/) , { A , B } ) <-> U e. if ( A = C , (/) , { A , C } ) ) ) |