This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any restriction of a category (as an extensible structure which is an unordered triple of ordered pairs) is an unordered triple of ordered pairs. (Contributed by AV, 15-Mar-2020) (Revised by AV, 3-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrres.c | |- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
|
| estrres.b | |- ( ph -> B e. V ) |
||
| estrres.h | |- ( ph -> H e. X ) |
||
| estrres.x | |- ( ph -> .x. e. Y ) |
||
| estrres.g | |- ( ph -> G e. W ) |
||
| estrres.u | |- ( ph -> A C_ B ) |
||
| Assertion | estrres | |- ( ph -> ( ( C |`s A ) sSet <. ( Hom ` ndx ) , G >. ) = { <. ( Base ` ndx ) , A >. , <. ( Hom ` ndx ) , G >. , <. ( comp ` ndx ) , .x. >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrres.c | |- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
|
| 2 | estrres.b | |- ( ph -> B e. V ) |
|
| 3 | estrres.h | |- ( ph -> H e. X ) |
|
| 4 | estrres.x | |- ( ph -> .x. e. Y ) |
|
| 5 | estrres.g | |- ( ph -> G e. W ) |
|
| 6 | estrres.u | |- ( ph -> A C_ B ) |
|
| 7 | ovex | |- ( C |`s A ) e. _V |
|
| 8 | setsval | |- ( ( ( C |`s A ) e. _V /\ G e. W ) -> ( ( C |`s A ) sSet <. ( Hom ` ndx ) , G >. ) = ( ( ( C |`s A ) |` ( _V \ { ( Hom ` ndx ) } ) ) u. { <. ( Hom ` ndx ) , G >. } ) ) |
|
| 9 | 7 5 8 | sylancr | |- ( ph -> ( ( C |`s A ) sSet <. ( Hom ` ndx ) , G >. ) = ( ( ( C |`s A ) |` ( _V \ { ( Hom ` ndx ) } ) ) u. { <. ( Hom ` ndx ) , G >. } ) ) |
| 10 | eqid | |- ( C |`s A ) = ( C |`s A ) |
|
| 11 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 12 | eqid | |- ( Base ` ndx ) = ( Base ` ndx ) |
|
| 13 | tpex | |- { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V |
|
| 14 | 1 13 | eqeltrdi | |- ( ph -> C e. _V ) |
| 15 | fvex | |- ( Base ` ndx ) e. _V |
|
| 16 | fvex | |- ( Hom ` ndx ) e. _V |
|
| 17 | fvex | |- ( comp ` ndx ) e. _V |
|
| 18 | 15 16 17 | 3pm3.2i | |- ( ( Base ` ndx ) e. _V /\ ( Hom ` ndx ) e. _V /\ ( comp ` ndx ) e. _V ) |
| 19 | 18 | a1i | |- ( ph -> ( ( Base ` ndx ) e. _V /\ ( Hom ` ndx ) e. _V /\ ( comp ` ndx ) e. _V ) ) |
| 20 | slotsbhcdif | |- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
|
| 21 | 20 | a1i | |- ( ph -> ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) ) |
| 22 | funtpg | |- ( ( ( ( Base ` ndx ) e. _V /\ ( Hom ` ndx ) e. _V /\ ( comp ` ndx ) e. _V ) /\ ( B e. V /\ H e. X /\ .x. e. Y ) /\ ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) ) -> Fun { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
|
| 23 | 19 2 3 4 21 22 | syl131anc | |- ( ph -> Fun { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 24 | 1 | funeqd | |- ( ph -> ( Fun C <-> Fun { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) ) |
| 25 | 23 24 | mpbird | |- ( ph -> Fun C ) |
| 26 | 1 2 3 4 | estrreslem2 | |- ( ph -> ( Base ` ndx ) e. dom C ) |
| 27 | 1 2 | estrreslem1 | |- ( ph -> B = ( Base ` C ) ) |
| 28 | 6 27 | sseqtrd | |- ( ph -> A C_ ( Base ` C ) ) |
| 29 | 10 11 12 14 25 26 28 | ressval3d | |- ( ph -> ( C |`s A ) = ( C sSet <. ( Base ` ndx ) , A >. ) ) |
| 30 | 29 | reseq1d | |- ( ph -> ( ( C |`s A ) |` ( _V \ { ( Hom ` ndx ) } ) ) = ( ( C sSet <. ( Base ` ndx ) , A >. ) |` ( _V \ { ( Hom ` ndx ) } ) ) ) |
| 31 | 30 | uneq1d | |- ( ph -> ( ( ( C |`s A ) |` ( _V \ { ( Hom ` ndx ) } ) ) u. { <. ( Hom ` ndx ) , G >. } ) = ( ( ( C sSet <. ( Base ` ndx ) , A >. ) |` ( _V \ { ( Hom ` ndx ) } ) ) u. { <. ( Hom ` ndx ) , G >. } ) ) |
| 32 | 2 6 | ssexd | |- ( ph -> A e. _V ) |
| 33 | setsval | |- ( ( C e. _V /\ A e. _V ) -> ( C sSet <. ( Base ` ndx ) , A >. ) = ( ( C |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , A >. } ) ) |
|
| 34 | 14 32 33 | syl2anc | |- ( ph -> ( C sSet <. ( Base ` ndx ) , A >. ) = ( ( C |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , A >. } ) ) |
| 35 | 34 | reseq1d | |- ( ph -> ( ( C sSet <. ( Base ` ndx ) , A >. ) |` ( _V \ { ( Hom ` ndx ) } ) ) = ( ( ( C |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , A >. } ) |` ( _V \ { ( Hom ` ndx ) } ) ) ) |
| 36 | fvexd | |- ( ph -> ( Hom ` ndx ) e. _V ) |
|
| 37 | fvexd | |- ( ph -> ( comp ` ndx ) e. _V ) |
|
| 38 | 3 | elexd | |- ( ph -> H e. _V ) |
| 39 | 4 | elexd | |- ( ph -> .x. e. _V ) |
| 40 | simp1 | |- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( Base ` ndx ) =/= ( Hom ` ndx ) ) |
|
| 41 | 40 | necomd | |- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( Hom ` ndx ) =/= ( Base ` ndx ) ) |
| 42 | 20 41 | mp1i | |- ( ph -> ( Hom ` ndx ) =/= ( Base ` ndx ) ) |
| 43 | simp2 | |- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( Base ` ndx ) =/= ( comp ` ndx ) ) |
|
| 44 | 43 | necomd | |- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( comp ` ndx ) =/= ( Base ` ndx ) ) |
| 45 | 20 44 | mp1i | |- ( ph -> ( comp ` ndx ) =/= ( Base ` ndx ) ) |
| 46 | 1 36 37 38 39 42 45 | tpres | |- ( ph -> ( C |` ( _V \ { ( Base ` ndx ) } ) ) = { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 47 | 46 | uneq1d | |- ( ph -> ( ( C |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , A >. } ) = ( { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } u. { <. ( Base ` ndx ) , A >. } ) ) |
| 48 | df-tp | |- { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. } = ( { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } u. { <. ( Base ` ndx ) , A >. } ) |
|
| 49 | 47 48 | eqtr4di | |- ( ph -> ( ( C |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , A >. } ) = { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. } ) |
| 50 | fvexd | |- ( ph -> ( Base ` ndx ) e. _V ) |
|
| 51 | simp3 | |- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
|
| 52 | 51 | necomd | |- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( comp ` ndx ) =/= ( Hom ` ndx ) ) |
| 53 | 20 52 | mp1i | |- ( ph -> ( comp ` ndx ) =/= ( Hom ` ndx ) ) |
| 54 | 20 40 | mp1i | |- ( ph -> ( Base ` ndx ) =/= ( Hom ` ndx ) ) |
| 55 | 49 37 50 39 32 53 54 | tpres | |- ( ph -> ( ( ( C |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , A >. } ) |` ( _V \ { ( Hom ` ndx ) } ) ) = { <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. } ) |
| 56 | 35 55 | eqtrd | |- ( ph -> ( ( C sSet <. ( Base ` ndx ) , A >. ) |` ( _V \ { ( Hom ` ndx ) } ) ) = { <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. } ) |
| 57 | 56 | uneq1d | |- ( ph -> ( ( ( C sSet <. ( Base ` ndx ) , A >. ) |` ( _V \ { ( Hom ` ndx ) } ) ) u. { <. ( Hom ` ndx ) , G >. } ) = ( { <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. } u. { <. ( Hom ` ndx ) , G >. } ) ) |
| 58 | df-tp | |- { <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. , <. ( Hom ` ndx ) , G >. } = ( { <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. } u. { <. ( Hom ` ndx ) , G >. } ) |
|
| 59 | tprot | |- { <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. , <. ( Hom ` ndx ) , G >. } = { <. ( Base ` ndx ) , A >. , <. ( Hom ` ndx ) , G >. , <. ( comp ` ndx ) , .x. >. } |
|
| 60 | 58 59 | eqtr3i | |- ( { <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. } u. { <. ( Hom ` ndx ) , G >. } ) = { <. ( Base ` ndx ) , A >. , <. ( Hom ` ndx ) , G >. , <. ( comp ` ndx ) , .x. >. } |
| 61 | 57 60 | eqtrdi | |- ( ph -> ( ( ( C sSet <. ( Base ` ndx ) , A >. ) |` ( _V \ { ( Hom ` ndx ) } ) ) u. { <. ( Hom ` ndx ) , G >. } ) = { <. ( Base ` ndx ) , A >. , <. ( Hom ` ndx ) , G >. , <. ( comp ` ndx ) , .x. >. } ) |
| 62 | 9 31 61 | 3eqtrd | |- ( ph -> ( ( C |`s A ) sSet <. ( Hom ` ndx ) , G >. ) = { <. ( Base ` ndx ) , A >. , <. ( Hom ` ndx ) , G >. , <. ( comp ` ndx ) , .x. >. } ) |