This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for estrres . (Contributed by AV, 14-Mar-2020) (Proof shortened by AV, 28-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrres.c | |- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
|
| estrres.b | |- ( ph -> B e. V ) |
||
| Assertion | estrreslem1 | |- ( ph -> B = ( Base ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrres.c | |- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
|
| 2 | estrres.b | |- ( ph -> B e. V ) |
|
| 3 | 1 | fveq2d | |- ( ph -> ( Base ` C ) = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) ) |
| 4 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 5 | tpex | |- { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V |
|
| 6 | 5 | a1i | |- ( ph -> { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V ) |
| 7 | 4 6 | strfvnd | |- ( ph -> ( Base ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ` ( Base ` ndx ) ) ) |
| 8 | fvexd | |- ( ph -> ( Base ` ndx ) e. _V ) |
|
| 9 | slotsbhcdif | |- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
|
| 10 | 3simpa | |- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) ) ) |
|
| 11 | 9 10 | mp1i | |- ( ph -> ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) ) ) |
| 12 | fvtp1g | |- ( ( ( ( Base ` ndx ) e. _V /\ B e. V ) /\ ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) ) ) -> ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ` ( Base ` ndx ) ) = B ) |
|
| 13 | 8 2 11 12 | syl21anc | |- ( ph -> ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ` ( Base ` ndx ) ) = B ) |
| 14 | 3 7 13 | 3eqtrrd | |- ( ph -> B = ( Base ` C ) ) |