This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020) (Revised by AV, 3-Jul-2022) (Proof shortened by AV, 17-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressval3d.r | |- R = ( S |`s A ) |
|
| ressval3d.b | |- B = ( Base ` S ) |
||
| ressval3d.e | |- E = ( Base ` ndx ) |
||
| ressval3d.s | |- ( ph -> S e. V ) |
||
| ressval3d.f | |- ( ph -> Fun S ) |
||
| ressval3d.d | |- ( ph -> E e. dom S ) |
||
| ressval3d.u | |- ( ph -> A C_ B ) |
||
| Assertion | ressval3d | |- ( ph -> R = ( S sSet <. E , A >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressval3d.r | |- R = ( S |`s A ) |
|
| 2 | ressval3d.b | |- B = ( Base ` S ) |
|
| 3 | ressval3d.e | |- E = ( Base ` ndx ) |
|
| 4 | ressval3d.s | |- ( ph -> S e. V ) |
|
| 5 | ressval3d.f | |- ( ph -> Fun S ) |
|
| 6 | ressval3d.d | |- ( ph -> E e. dom S ) |
|
| 7 | ressval3d.u | |- ( ph -> A C_ B ) |
|
| 8 | sspss | |- ( A C_ B <-> ( A C. B \/ A = B ) ) |
|
| 9 | dfpss3 | |- ( A C. B <-> ( A C_ B /\ -. B C_ A ) ) |
|
| 10 | 9 | orbi1i | |- ( ( A C. B \/ A = B ) <-> ( ( A C_ B /\ -. B C_ A ) \/ A = B ) ) |
| 11 | 8 10 | bitri | |- ( A C_ B <-> ( ( A C_ B /\ -. B C_ A ) \/ A = B ) ) |
| 12 | simplr | |- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> -. B C_ A ) |
|
| 13 | 4 | adantl | |- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> S e. V ) |
| 14 | simpl | |- ( ( A C_ B /\ -. B C_ A ) -> A C_ B ) |
|
| 15 | 2 | fvexi | |- B e. _V |
| 16 | 15 | a1i | |- ( ph -> B e. _V ) |
| 17 | ssexg | |- ( ( A C_ B /\ B e. _V ) -> A e. _V ) |
|
| 18 | 14 16 17 | syl2an | |- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> A e. _V ) |
| 19 | 1 2 | ressval2 | |- ( ( -. B C_ A /\ S e. V /\ A e. _V ) -> R = ( S sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) |
| 20 | 12 13 18 19 | syl3anc | |- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> R = ( S sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) |
| 21 | 3 | a1i | |- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> E = ( Base ` ndx ) ) |
| 22 | dfss2 | |- ( A C_ B <-> ( A i^i B ) = A ) |
|
| 23 | 22 | biimpi | |- ( A C_ B -> ( A i^i B ) = A ) |
| 24 | 23 | eqcomd | |- ( A C_ B -> A = ( A i^i B ) ) |
| 25 | 24 | adantr | |- ( ( A C_ B /\ -. B C_ A ) -> A = ( A i^i B ) ) |
| 26 | 25 | adantr | |- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> A = ( A i^i B ) ) |
| 27 | 21 26 | opeq12d | |- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> <. E , A >. = <. ( Base ` ndx ) , ( A i^i B ) >. ) |
| 28 | 27 | eqcomd | |- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> <. ( Base ` ndx ) , ( A i^i B ) >. = <. E , A >. ) |
| 29 | 28 | oveq2d | |- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> ( S sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) = ( S sSet <. E , A >. ) ) |
| 30 | 20 29 | eqtrd | |- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> R = ( S sSet <. E , A >. ) ) |
| 31 | 30 | ex | |- ( ( A C_ B /\ -. B C_ A ) -> ( ph -> R = ( S sSet <. E , A >. ) ) ) |
| 32 | 1 | a1i | |- ( ( A = B /\ ph ) -> R = ( S |`s A ) ) |
| 33 | oveq2 | |- ( A = B -> ( S |`s A ) = ( S |`s B ) ) |
|
| 34 | 33 | adantr | |- ( ( A = B /\ ph ) -> ( S |`s A ) = ( S |`s B ) ) |
| 35 | 4 | adantl | |- ( ( A = B /\ ph ) -> S e. V ) |
| 36 | 2 | ressid | |- ( S e. V -> ( S |`s B ) = S ) |
| 37 | 35 36 | syl | |- ( ( A = B /\ ph ) -> ( S |`s B ) = S ) |
| 38 | 32 34 37 | 3eqtrd | |- ( ( A = B /\ ph ) -> R = S ) |
| 39 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 40 | 3 6 | eqeltrrid | |- ( ph -> ( Base ` ndx ) e. dom S ) |
| 41 | 39 4 5 40 | setsidvald | |- ( ph -> S = ( S sSet <. ( Base ` ndx ) , ( Base ` S ) >. ) ) |
| 42 | 41 | adantl | |- ( ( A = B /\ ph ) -> S = ( S sSet <. ( Base ` ndx ) , ( Base ` S ) >. ) ) |
| 43 | 3 | a1i | |- ( ( A = B /\ ph ) -> E = ( Base ` ndx ) ) |
| 44 | simpl | |- ( ( A = B /\ ph ) -> A = B ) |
|
| 45 | 44 2 | eqtrdi | |- ( ( A = B /\ ph ) -> A = ( Base ` S ) ) |
| 46 | 43 45 | opeq12d | |- ( ( A = B /\ ph ) -> <. E , A >. = <. ( Base ` ndx ) , ( Base ` S ) >. ) |
| 47 | 46 | eqcomd | |- ( ( A = B /\ ph ) -> <. ( Base ` ndx ) , ( Base ` S ) >. = <. E , A >. ) |
| 48 | 47 | oveq2d | |- ( ( A = B /\ ph ) -> ( S sSet <. ( Base ` ndx ) , ( Base ` S ) >. ) = ( S sSet <. E , A >. ) ) |
| 49 | 38 42 48 | 3eqtrd | |- ( ( A = B /\ ph ) -> R = ( S sSet <. E , A >. ) ) |
| 50 | 49 | ex | |- ( A = B -> ( ph -> R = ( S sSet <. E , A >. ) ) ) |
| 51 | 31 50 | jaoi | |- ( ( ( A C_ B /\ -. B C_ A ) \/ A = B ) -> ( ph -> R = ( S sSet <. E , A >. ) ) ) |
| 52 | 11 51 | sylbi | |- ( A C_ B -> ( ph -> R = ( S sSet <. E , A >. ) ) ) |
| 53 | 7 52 | mpcom | |- ( ph -> R = ( S sSet <. E , A >. ) ) |