This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017) (Proof shortened by JJ, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funtpg | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( A e. F /\ B e. G /\ C e. H ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> Fun { <. X , A >. , <. Y , B >. , <. Z , C >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa | |- ( ( X e. U /\ Y e. V /\ Z e. W ) -> ( X e. U /\ Y e. V ) ) |
|
| 2 | 3simpa | |- ( ( A e. F /\ B e. G /\ C e. H ) -> ( A e. F /\ B e. G ) ) |
|
| 3 | simp1 | |- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> X =/= Y ) |
|
| 4 | funprg | |- ( ( ( X e. U /\ Y e. V ) /\ ( A e. F /\ B e. G ) /\ X =/= Y ) -> Fun { <. X , A >. , <. Y , B >. } ) |
|
| 5 | 1 2 3 4 | syl3an | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( A e. F /\ B e. G /\ C e. H ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> Fun { <. X , A >. , <. Y , B >. } ) |
| 6 | simp3 | |- ( ( X e. U /\ Y e. V /\ Z e. W ) -> Z e. W ) |
|
| 7 | simp3 | |- ( ( A e. F /\ B e. G /\ C e. H ) -> C e. H ) |
|
| 8 | funsng | |- ( ( Z e. W /\ C e. H ) -> Fun { <. Z , C >. } ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( A e. F /\ B e. G /\ C e. H ) ) -> Fun { <. Z , C >. } ) |
| 10 | 9 | 3adant3 | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( A e. F /\ B e. G /\ C e. H ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> Fun { <. Z , C >. } ) |
| 11 | dmpropg | |- ( ( A e. F /\ B e. G ) -> dom { <. X , A >. , <. Y , B >. } = { X , Y } ) |
|
| 12 | dmsnopg | |- ( C e. H -> dom { <. Z , C >. } = { Z } ) |
|
| 13 | 11 12 | ineqan12d | |- ( ( ( A e. F /\ B e. G ) /\ C e. H ) -> ( dom { <. X , A >. , <. Y , B >. } i^i dom { <. Z , C >. } ) = ( { X , Y } i^i { Z } ) ) |
| 14 | 13 | 3impa | |- ( ( A e. F /\ B e. G /\ C e. H ) -> ( dom { <. X , A >. , <. Y , B >. } i^i dom { <. Z , C >. } ) = ( { X , Y } i^i { Z } ) ) |
| 15 | disjprsn | |- ( ( X =/= Z /\ Y =/= Z ) -> ( { X , Y } i^i { Z } ) = (/) ) |
|
| 16 | 15 | 3adant1 | |- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( { X , Y } i^i { Z } ) = (/) ) |
| 17 | 14 16 | sylan9eq | |- ( ( ( A e. F /\ B e. G /\ C e. H ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( dom { <. X , A >. , <. Y , B >. } i^i dom { <. Z , C >. } ) = (/) ) |
| 18 | 17 | 3adant1 | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( A e. F /\ B e. G /\ C e. H ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( dom { <. X , A >. , <. Y , B >. } i^i dom { <. Z , C >. } ) = (/) ) |
| 19 | funun | |- ( ( ( Fun { <. X , A >. , <. Y , B >. } /\ Fun { <. Z , C >. } ) /\ ( dom { <. X , A >. , <. Y , B >. } i^i dom { <. Z , C >. } ) = (/) ) -> Fun ( { <. X , A >. , <. Y , B >. } u. { <. Z , C >. } ) ) |
|
| 20 | 5 10 18 19 | syl21anc | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( A e. F /\ B e. G /\ C e. H ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> Fun ( { <. X , A >. , <. Y , B >. } u. { <. Z , C >. } ) ) |
| 21 | df-tp | |- { <. X , A >. , <. Y , B >. , <. Z , C >. } = ( { <. X , A >. , <. Y , B >. } u. { <. Z , C >. } ) |
|
| 22 | 21 | funeqi | |- ( Fun { <. X , A >. , <. Y , B >. , <. Z , C >. } <-> Fun ( { <. X , A >. , <. Y , B >. } u. { <. Z , C >. } ) ) |
| 23 | 20 22 | sylibr | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( A e. F /\ B e. G /\ C e. H ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> Fun { <. X , A >. , <. Y , B >. , <. Z , C >. } ) |