This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for estrres . (Contributed by AV, 14-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrres.c | |- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
|
| estrres.b | |- ( ph -> B e. V ) |
||
| estrres.h | |- ( ph -> H e. X ) |
||
| estrres.x | |- ( ph -> .x. e. Y ) |
||
| Assertion | estrreslem2 | |- ( ph -> ( Base ` ndx ) e. dom C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrres.c | |- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
|
| 2 | estrres.b | |- ( ph -> B e. V ) |
|
| 3 | estrres.h | |- ( ph -> H e. X ) |
|
| 4 | estrres.x | |- ( ph -> .x. e. Y ) |
|
| 5 | eqidd | |- ( ph -> ( Base ` ndx ) = ( Base ` ndx ) ) |
|
| 6 | 5 | 3mix1d | |- ( ph -> ( ( Base ` ndx ) = ( Base ` ndx ) \/ ( Base ` ndx ) = ( Hom ` ndx ) \/ ( Base ` ndx ) = ( comp ` ndx ) ) ) |
| 7 | fvex | |- ( Base ` ndx ) e. _V |
|
| 8 | eltpg | |- ( ( Base ` ndx ) e. _V -> ( ( Base ` ndx ) e. { ( Base ` ndx ) , ( Hom ` ndx ) , ( comp ` ndx ) } <-> ( ( Base ` ndx ) = ( Base ` ndx ) \/ ( Base ` ndx ) = ( Hom ` ndx ) \/ ( Base ` ndx ) = ( comp ` ndx ) ) ) ) |
|
| 9 | 7 8 | mp1i | |- ( ph -> ( ( Base ` ndx ) e. { ( Base ` ndx ) , ( Hom ` ndx ) , ( comp ` ndx ) } <-> ( ( Base ` ndx ) = ( Base ` ndx ) \/ ( Base ` ndx ) = ( Hom ` ndx ) \/ ( Base ` ndx ) = ( comp ` ndx ) ) ) ) |
| 10 | 6 9 | mpbird | |- ( ph -> ( Base ` ndx ) e. { ( Base ` ndx ) , ( Hom ` ndx ) , ( comp ` ndx ) } ) |
| 11 | df-tp | |- { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } = ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } u. { <. ( comp ` ndx ) , .x. >. } ) |
|
| 12 | 11 | a1i | |- ( ph -> { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } = ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } u. { <. ( comp ` ndx ) , .x. >. } ) ) |
| 13 | 12 | dmeqd | |- ( ph -> dom { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } = dom ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } u. { <. ( comp ` ndx ) , .x. >. } ) ) |
| 14 | dmun | |- dom ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } u. { <. ( comp ` ndx ) , .x. >. } ) = ( dom { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } u. dom { <. ( comp ` ndx ) , .x. >. } ) |
|
| 15 | 14 | a1i | |- ( ph -> dom ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } u. { <. ( comp ` ndx ) , .x. >. } ) = ( dom { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } u. dom { <. ( comp ` ndx ) , .x. >. } ) ) |
| 16 | dmpropg | |- ( ( B e. V /\ H e. X ) -> dom { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } = { ( Base ` ndx ) , ( Hom ` ndx ) } ) |
|
| 17 | 2 3 16 | syl2anc | |- ( ph -> dom { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } = { ( Base ` ndx ) , ( Hom ` ndx ) } ) |
| 18 | dmsnopg | |- ( .x. e. Y -> dom { <. ( comp ` ndx ) , .x. >. } = { ( comp ` ndx ) } ) |
|
| 19 | 4 18 | syl | |- ( ph -> dom { <. ( comp ` ndx ) , .x. >. } = { ( comp ` ndx ) } ) |
| 20 | 17 19 | uneq12d | |- ( ph -> ( dom { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } u. dom { <. ( comp ` ndx ) , .x. >. } ) = ( { ( Base ` ndx ) , ( Hom ` ndx ) } u. { ( comp ` ndx ) } ) ) |
| 21 | 13 15 20 | 3eqtrd | |- ( ph -> dom { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } = ( { ( Base ` ndx ) , ( Hom ` ndx ) } u. { ( comp ` ndx ) } ) ) |
| 22 | 1 | dmeqd | |- ( ph -> dom C = dom { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 23 | df-tp | |- { ( Base ` ndx ) , ( Hom ` ndx ) , ( comp ` ndx ) } = ( { ( Base ` ndx ) , ( Hom ` ndx ) } u. { ( comp ` ndx ) } ) |
|
| 24 | 23 | a1i | |- ( ph -> { ( Base ` ndx ) , ( Hom ` ndx ) , ( comp ` ndx ) } = ( { ( Base ` ndx ) , ( Hom ` ndx ) } u. { ( comp ` ndx ) } ) ) |
| 25 | 21 22 24 | 3eqtr4d | |- ( ph -> dom C = { ( Base ` ndx ) , ( Hom ` ndx ) , ( comp ` ndx ) } ) |
| 26 | 10 25 | eleqtrrd | |- ( ph -> ( Base ` ndx ) e. dom C ) |