This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eropr.1 | |- J = ( A /. R ) |
|
| eropr.2 | |- K = ( B /. S ) |
||
| eropr.3 | |- ( ph -> T e. Z ) |
||
| eropr.4 | |- ( ph -> R Er U ) |
||
| eropr.5 | |- ( ph -> S Er V ) |
||
| eropr.6 | |- ( ph -> T Er W ) |
||
| eropr.7 | |- ( ph -> A C_ U ) |
||
| eropr.8 | |- ( ph -> B C_ V ) |
||
| eropr.9 | |- ( ph -> C C_ W ) |
||
| eropr.10 | |- ( ph -> .+ : ( A X. B ) --> C ) |
||
| eropr.11 | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( r R s /\ t S u ) -> ( r .+ t ) T ( s .+ u ) ) ) |
||
| eropr.12 | |- .+^ = { <. <. x , y >. , z >. | E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) } |
||
| eropr.13 | |- ( ph -> R e. X ) |
||
| eropr.14 | |- ( ph -> S e. Y ) |
||
| eropr.15 | |- L = ( C /. T ) |
||
| Assertion | eroprf | |- ( ph -> .+^ : ( J X. K ) --> L ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eropr.1 | |- J = ( A /. R ) |
|
| 2 | eropr.2 | |- K = ( B /. S ) |
|
| 3 | eropr.3 | |- ( ph -> T e. Z ) |
|
| 4 | eropr.4 | |- ( ph -> R Er U ) |
|
| 5 | eropr.5 | |- ( ph -> S Er V ) |
|
| 6 | eropr.6 | |- ( ph -> T Er W ) |
|
| 7 | eropr.7 | |- ( ph -> A C_ U ) |
|
| 8 | eropr.8 | |- ( ph -> B C_ V ) |
|
| 9 | eropr.9 | |- ( ph -> C C_ W ) |
|
| 10 | eropr.10 | |- ( ph -> .+ : ( A X. B ) --> C ) |
|
| 11 | eropr.11 | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( r R s /\ t S u ) -> ( r .+ t ) T ( s .+ u ) ) ) |
|
| 12 | eropr.12 | |- .+^ = { <. <. x , y >. , z >. | E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) } |
|
| 13 | eropr.13 | |- ( ph -> R e. X ) |
|
| 14 | eropr.14 | |- ( ph -> S e. Y ) |
|
| 15 | eropr.15 | |- L = ( C /. T ) |
|
| 16 | 3 | ad2antrr | |- ( ( ( ph /\ ( x e. J /\ y e. K ) ) /\ ( p e. A /\ q e. B ) ) -> T e. Z ) |
| 17 | 10 | adantr | |- ( ( ph /\ ( x e. J /\ y e. K ) ) -> .+ : ( A X. B ) --> C ) |
| 18 | 17 | fovcdmda | |- ( ( ( ph /\ ( x e. J /\ y e. K ) ) /\ ( p e. A /\ q e. B ) ) -> ( p .+ q ) e. C ) |
| 19 | ecelqsw | |- ( ( T e. Z /\ ( p .+ q ) e. C ) -> [ ( p .+ q ) ] T e. ( C /. T ) ) |
|
| 20 | 16 18 19 | syl2anc | |- ( ( ( ph /\ ( x e. J /\ y e. K ) ) /\ ( p e. A /\ q e. B ) ) -> [ ( p .+ q ) ] T e. ( C /. T ) ) |
| 21 | 20 15 | eleqtrrdi | |- ( ( ( ph /\ ( x e. J /\ y e. K ) ) /\ ( p e. A /\ q e. B ) ) -> [ ( p .+ q ) ] T e. L ) |
| 22 | eleq1a | |- ( [ ( p .+ q ) ] T e. L -> ( z = [ ( p .+ q ) ] T -> z e. L ) ) |
|
| 23 | 21 22 | syl | |- ( ( ( ph /\ ( x e. J /\ y e. K ) ) /\ ( p e. A /\ q e. B ) ) -> ( z = [ ( p .+ q ) ] T -> z e. L ) ) |
| 24 | 23 | adantld | |- ( ( ( ph /\ ( x e. J /\ y e. K ) ) /\ ( p e. A /\ q e. B ) ) -> ( ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) -> z e. L ) ) |
| 25 | 24 | rexlimdvva | |- ( ( ph /\ ( x e. J /\ y e. K ) ) -> ( E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) -> z e. L ) ) |
| 26 | 25 | abssdv | |- ( ( ph /\ ( x e. J /\ y e. K ) ) -> { z | E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) } C_ L ) |
| 27 | 1 2 3 4 5 6 7 8 9 10 11 | eroveu | |- ( ( ph /\ ( x e. J /\ y e. K ) ) -> E! z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
| 28 | iotacl | |- ( E! z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) -> ( iota z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) e. { z | E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) } ) |
|
| 29 | 27 28 | syl | |- ( ( ph /\ ( x e. J /\ y e. K ) ) -> ( iota z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) e. { z | E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) } ) |
| 30 | 26 29 | sseldd | |- ( ( ph /\ ( x e. J /\ y e. K ) ) -> ( iota z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) e. L ) |
| 31 | 30 | ralrimivva | |- ( ph -> A. x e. J A. y e. K ( iota z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) e. L ) |
| 32 | eqid | |- ( x e. J , y e. K |-> ( iota z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) = ( x e. J , y e. K |-> ( iota z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) |
|
| 33 | 32 | fmpo | |- ( A. x e. J A. y e. K ( iota z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) e. L <-> ( x e. J , y e. K |-> ( iota z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) : ( J X. K ) --> L ) |
| 34 | 31 33 | sylib | |- ( ph -> ( x e. J , y e. K |-> ( iota z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) : ( J X. K ) --> L ) |
| 35 | 1 2 3 4 5 6 7 8 9 10 11 12 | erovlem | |- ( ph -> .+^ = ( x e. J , y e. K |-> ( iota z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) ) |
| 36 | 35 | feq1d | |- ( ph -> ( .+^ : ( J X. K ) --> L <-> ( x e. J , y e. K |-> ( iota z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) : ( J X. K ) --> L ) ) |
| 37 | 34 36 | mpbird | |- ( ph -> .+^ : ( J X. K ) --> L ) |