This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of an equivalence class in a quotient set. More restrictive antecedent; kept for backward compatibility; for new work, prefer ecelqs . (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 9-Jul-2014) (Proof shortened by AV, 25-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecelqsw | |- ( ( R e. V /\ B e. A ) -> [ B ] R e. ( A /. R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resexg | |- ( R e. V -> ( R |` A ) e. _V ) |
|
| 2 | ecelqs | |- ( ( ( R |` A ) e. _V /\ B e. A ) -> [ B ] R e. ( A /. R ) ) |
|
| 3 | 1 2 | sylan | |- ( ( R e. V /\ B e. A ) -> [ B ] R e. ( A /. R ) ) |