This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural logarithm function on positive reals is strictly monotonic. (Contributed by Steve Rodriguez, 25-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logltb | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( A < B <-> ( log ` A ) < ( log ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relogiso | |- ( log |` RR+ ) Isom < , < ( RR+ , RR ) |
|
| 2 | df-isom | |- ( ( log |` RR+ ) Isom < , < ( RR+ , RR ) <-> ( ( log |` RR+ ) : RR+ -1-1-onto-> RR /\ A. x e. RR+ A. y e. RR+ ( x < y <-> ( ( log |` RR+ ) ` x ) < ( ( log |` RR+ ) ` y ) ) ) ) |
|
| 3 | 1 2 | mpbi | |- ( ( log |` RR+ ) : RR+ -1-1-onto-> RR /\ A. x e. RR+ A. y e. RR+ ( x < y <-> ( ( log |` RR+ ) ` x ) < ( ( log |` RR+ ) ` y ) ) ) |
| 4 | 3 | simpri | |- A. x e. RR+ A. y e. RR+ ( x < y <-> ( ( log |` RR+ ) ` x ) < ( ( log |` RR+ ) ` y ) ) |
| 5 | breq1 | |- ( x = A -> ( x < y <-> A < y ) ) |
|
| 6 | fveq2 | |- ( x = A -> ( ( log |` RR+ ) ` x ) = ( ( log |` RR+ ) ` A ) ) |
|
| 7 | 6 | breq1d | |- ( x = A -> ( ( ( log |` RR+ ) ` x ) < ( ( log |` RR+ ) ` y ) <-> ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` y ) ) ) |
| 8 | 5 7 | bibi12d | |- ( x = A -> ( ( x < y <-> ( ( log |` RR+ ) ` x ) < ( ( log |` RR+ ) ` y ) ) <-> ( A < y <-> ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` y ) ) ) ) |
| 9 | breq2 | |- ( y = B -> ( A < y <-> A < B ) ) |
|
| 10 | fveq2 | |- ( y = B -> ( ( log |` RR+ ) ` y ) = ( ( log |` RR+ ) ` B ) ) |
|
| 11 | 10 | breq2d | |- ( y = B -> ( ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` y ) <-> ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` B ) ) ) |
| 12 | 9 11 | bibi12d | |- ( y = B -> ( ( A < y <-> ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` y ) ) <-> ( A < B <-> ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` B ) ) ) ) |
| 13 | 8 12 | rspc2v | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( A. x e. RR+ A. y e. RR+ ( x < y <-> ( ( log |` RR+ ) ` x ) < ( ( log |` RR+ ) ` y ) ) -> ( A < B <-> ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` B ) ) ) ) |
| 14 | 4 13 | mpi | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( A < B <-> ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` B ) ) ) |
| 15 | fvres | |- ( A e. RR+ -> ( ( log |` RR+ ) ` A ) = ( log ` A ) ) |
|
| 16 | fvres | |- ( B e. RR+ -> ( ( log |` RR+ ) ` B ) = ( log ` B ) ) |
|
| 17 | 15 16 | breqan12d | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` B ) <-> ( log ` A ) < ( log ` B ) ) ) |
| 18 | 14 17 | bitrd | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( A < B <-> ( log ` A ) < ( log ` B ) ) ) |