This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmdvdsr.x | |- X = ( Base ` R ) |
|
| rhmdvdsr.m | |- .|| = ( ||r ` R ) |
||
| rhmdvdsr.n | |- ./ = ( ||r ` S ) |
||
| Assertion | rhmdvdsr | |- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> ( F ` A ) ./ ( F ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmdvdsr.x | |- X = ( Base ` R ) |
|
| 2 | rhmdvdsr.m | |- .|| = ( ||r ` R ) |
|
| 3 | rhmdvdsr.n | |- ./ = ( ||r ` S ) |
|
| 4 | simpl1 | |- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> F e. ( R RingHom S ) ) |
|
| 5 | simpl2 | |- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> A e. X ) |
|
| 6 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 7 | 1 6 | rhmf | |- ( F e. ( R RingHom S ) -> F : X --> ( Base ` S ) ) |
| 8 | 7 | ffvelcdmda | |- ( ( F e. ( R RingHom S ) /\ A e. X ) -> ( F ` A ) e. ( Base ` S ) ) |
| 9 | 4 5 8 | syl2anc | |- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> ( F ` A ) e. ( Base ` S ) ) |
| 10 | simpll1 | |- ( ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) /\ c e. X ) -> F e. ( R RingHom S ) ) |
|
| 11 | simpr | |- ( ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) /\ c e. X ) -> c e. X ) |
|
| 12 | 7 | ffvelcdmda | |- ( ( F e. ( R RingHom S ) /\ c e. X ) -> ( F ` c ) e. ( Base ` S ) ) |
| 13 | 10 11 12 | syl2anc | |- ( ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) /\ c e. X ) -> ( F ` c ) e. ( Base ` S ) ) |
| 14 | 13 | ralrimiva | |- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> A. c e. X ( F ` c ) e. ( Base ` S ) ) |
| 15 | 5 | adantr | |- ( ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) /\ c e. X ) -> A e. X ) |
| 16 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 17 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 18 | 1 16 17 | rhmmul | |- ( ( F e. ( R RingHom S ) /\ c e. X /\ A e. X ) -> ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) ) |
| 19 | 10 11 15 18 | syl3anc | |- ( ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) /\ c e. X ) -> ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) ) |
| 20 | 19 | ralrimiva | |- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> A. c e. X ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) ) |
| 21 | simpr | |- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> A .|| B ) |
|
| 22 | 1 2 16 | dvdsr2 | |- ( A e. X -> ( A .|| B <-> E. c e. X ( c ( .r ` R ) A ) = B ) ) |
| 23 | 22 | biimpac | |- ( ( A .|| B /\ A e. X ) -> E. c e. X ( c ( .r ` R ) A ) = B ) |
| 24 | 21 5 23 | syl2anc | |- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> E. c e. X ( c ( .r ` R ) A ) = B ) |
| 25 | r19.29 | |- ( ( A. c e. X ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) /\ E. c e. X ( c ( .r ` R ) A ) = B ) -> E. c e. X ( ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) /\ ( c ( .r ` R ) A ) = B ) ) |
|
| 26 | simpl | |- ( ( ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) /\ ( c ( .r ` R ) A ) = B ) -> ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) ) |
|
| 27 | simpr | |- ( ( ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) /\ ( c ( .r ` R ) A ) = B ) -> ( c ( .r ` R ) A ) = B ) |
|
| 28 | 27 | fveq2d | |- ( ( ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) /\ ( c ( .r ` R ) A ) = B ) -> ( F ` ( c ( .r ` R ) A ) ) = ( F ` B ) ) |
| 29 | 26 28 | eqtr3d | |- ( ( ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) /\ ( c ( .r ` R ) A ) = B ) -> ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) |
| 30 | 29 | reximi | |- ( E. c e. X ( ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) /\ ( c ( .r ` R ) A ) = B ) -> E. c e. X ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) |
| 31 | 25 30 | syl | |- ( ( A. c e. X ( F ` ( c ( .r ` R ) A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) /\ E. c e. X ( c ( .r ` R ) A ) = B ) -> E. c e. X ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) |
| 32 | 20 24 31 | syl2anc | |- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> E. c e. X ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) |
| 33 | r19.29 | |- ( ( A. c e. X ( F ` c ) e. ( Base ` S ) /\ E. c e. X ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) -> E. c e. X ( ( F ` c ) e. ( Base ` S ) /\ ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) ) |
|
| 34 | 14 32 33 | syl2anc | |- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> E. c e. X ( ( F ` c ) e. ( Base ` S ) /\ ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) ) |
| 35 | oveq1 | |- ( y = ( F ` c ) -> ( y ( .r ` S ) ( F ` A ) ) = ( ( F ` c ) ( .r ` S ) ( F ` A ) ) ) |
|
| 36 | 35 | eqeq1d | |- ( y = ( F ` c ) -> ( ( y ( .r ` S ) ( F ` A ) ) = ( F ` B ) <-> ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) ) |
| 37 | 36 | rspcev | |- ( ( ( F ` c ) e. ( Base ` S ) /\ ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) -> E. y e. ( Base ` S ) ( y ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) |
| 38 | 37 | rexlimivw | |- ( E. c e. X ( ( F ` c ) e. ( Base ` S ) /\ ( ( F ` c ) ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) -> E. y e. ( Base ` S ) ( y ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) |
| 39 | 34 38 | syl | |- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> E. y e. ( Base ` S ) ( y ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) |
| 40 | 6 3 17 | dvdsr | |- ( ( F ` A ) ./ ( F ` B ) <-> ( ( F ` A ) e. ( Base ` S ) /\ E. y e. ( Base ` S ) ( y ( .r ` S ) ( F ` A ) ) = ( F ` B ) ) ) |
| 41 | 9 39 40 | sylanbrc | |- ( ( ( F e. ( R RingHom S ) /\ A e. X /\ B e. X ) /\ A .|| B ) -> ( F ` A ) ./ ( F ` B ) ) |