This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efif1o . (Contributed by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efif1olem1.1 | |- D = ( A (,] ( A + ( 2 x. _pi ) ) ) |
|
| Assertion | efif1olem2 | |- ( ( A e. RR /\ z e. RR ) -> E. y e. D ( ( z - y ) / ( 2 x. _pi ) ) e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efif1olem1.1 | |- D = ( A (,] ( A + ( 2 x. _pi ) ) ) |
|
| 2 | simpl | |- ( ( A e. RR /\ z e. RR ) -> A e. RR ) |
|
| 3 | 2re | |- 2 e. RR |
|
| 4 | pire | |- _pi e. RR |
|
| 5 | 3 4 | remulcli | |- ( 2 x. _pi ) e. RR |
| 6 | readdcl | |- ( ( A e. RR /\ ( 2 x. _pi ) e. RR ) -> ( A + ( 2 x. _pi ) ) e. RR ) |
|
| 7 | 2 5 6 | sylancl | |- ( ( A e. RR /\ z e. RR ) -> ( A + ( 2 x. _pi ) ) e. RR ) |
| 8 | resubcl | |- ( ( A e. RR /\ z e. RR ) -> ( A - z ) e. RR ) |
|
| 9 | 2pos | |- 0 < 2 |
|
| 10 | pipos | |- 0 < _pi |
|
| 11 | 3 4 9 10 | mulgt0ii | |- 0 < ( 2 x. _pi ) |
| 12 | 5 11 | elrpii | |- ( 2 x. _pi ) e. RR+ |
| 13 | modcl | |- ( ( ( A - z ) e. RR /\ ( 2 x. _pi ) e. RR+ ) -> ( ( A - z ) mod ( 2 x. _pi ) ) e. RR ) |
|
| 14 | 8 12 13 | sylancl | |- ( ( A e. RR /\ z e. RR ) -> ( ( A - z ) mod ( 2 x. _pi ) ) e. RR ) |
| 15 | 7 14 | resubcld | |- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) e. RR ) |
| 16 | 5 | a1i | |- ( ( A e. RR /\ z e. RR ) -> ( 2 x. _pi ) e. RR ) |
| 17 | modlt | |- ( ( ( A - z ) e. RR /\ ( 2 x. _pi ) e. RR+ ) -> ( ( A - z ) mod ( 2 x. _pi ) ) < ( 2 x. _pi ) ) |
|
| 18 | 8 12 17 | sylancl | |- ( ( A e. RR /\ z e. RR ) -> ( ( A - z ) mod ( 2 x. _pi ) ) < ( 2 x. _pi ) ) |
| 19 | 14 16 2 18 | ltadd2dd | |- ( ( A e. RR /\ z e. RR ) -> ( A + ( ( A - z ) mod ( 2 x. _pi ) ) ) < ( A + ( 2 x. _pi ) ) ) |
| 20 | 2 14 7 | ltaddsubd | |- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( ( A - z ) mod ( 2 x. _pi ) ) ) < ( A + ( 2 x. _pi ) ) <-> A < ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) ) |
| 21 | 19 20 | mpbid | |- ( ( A e. RR /\ z e. RR ) -> A < ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) |
| 22 | modge0 | |- ( ( ( A - z ) e. RR /\ ( 2 x. _pi ) e. RR+ ) -> 0 <_ ( ( A - z ) mod ( 2 x. _pi ) ) ) |
|
| 23 | 8 12 22 | sylancl | |- ( ( A e. RR /\ z e. RR ) -> 0 <_ ( ( A - z ) mod ( 2 x. _pi ) ) ) |
| 24 | 7 14 | subge02d | |- ( ( A e. RR /\ z e. RR ) -> ( 0 <_ ( ( A - z ) mod ( 2 x. _pi ) ) <-> ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) <_ ( A + ( 2 x. _pi ) ) ) ) |
| 25 | 23 24 | mpbid | |- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) <_ ( A + ( 2 x. _pi ) ) ) |
| 26 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 27 | elioc2 | |- ( ( A e. RR* /\ ( A + ( 2 x. _pi ) ) e. RR ) -> ( ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) e. RR /\ A < ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) /\ ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) <_ ( A + ( 2 x. _pi ) ) ) ) ) |
|
| 28 | 26 7 27 | syl2an2r | |- ( ( A e. RR /\ z e. RR ) -> ( ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) e. RR /\ A < ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) /\ ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) <_ ( A + ( 2 x. _pi ) ) ) ) ) |
| 29 | 15 21 25 28 | mpbir3and | |- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) e. ( A (,] ( A + ( 2 x. _pi ) ) ) ) |
| 30 | 29 1 | eleqtrrdi | |- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) e. D ) |
| 31 | modval | |- ( ( ( A - z ) e. RR /\ ( 2 x. _pi ) e. RR+ ) -> ( ( A - z ) mod ( 2 x. _pi ) ) = ( ( A - z ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
|
| 32 | 8 12 31 | sylancl | |- ( ( A e. RR /\ z e. RR ) -> ( ( A - z ) mod ( 2 x. _pi ) ) = ( ( A - z ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
| 33 | 32 | oveq2d | |- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) = ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) ) |
| 34 | 7 | recnd | |- ( ( A e. RR /\ z e. RR ) -> ( A + ( 2 x. _pi ) ) e. CC ) |
| 35 | 8 | recnd | |- ( ( A e. RR /\ z e. RR ) -> ( A - z ) e. CC ) |
| 36 | 5 11 | gt0ne0ii | |- ( 2 x. _pi ) =/= 0 |
| 37 | redivcl | |- ( ( ( A - z ) e. RR /\ ( 2 x. _pi ) e. RR /\ ( 2 x. _pi ) =/= 0 ) -> ( ( A - z ) / ( 2 x. _pi ) ) e. RR ) |
|
| 38 | 5 36 37 | mp3an23 | |- ( ( A - z ) e. RR -> ( ( A - z ) / ( 2 x. _pi ) ) e. RR ) |
| 39 | 8 38 | syl | |- ( ( A e. RR /\ z e. RR ) -> ( ( A - z ) / ( 2 x. _pi ) ) e. RR ) |
| 40 | 39 | flcld | |- ( ( A e. RR /\ z e. RR ) -> ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) e. ZZ ) |
| 41 | 40 | zred | |- ( ( A e. RR /\ z e. RR ) -> ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) e. RR ) |
| 42 | remulcl | |- ( ( ( 2 x. _pi ) e. RR /\ ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) e. RR ) -> ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) e. RR ) |
|
| 43 | 5 41 42 | sylancr | |- ( ( A e. RR /\ z e. RR ) -> ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) e. RR ) |
| 44 | 43 | recnd | |- ( ( A e. RR /\ z e. RR ) -> ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) e. CC ) |
| 45 | 34 35 44 | subsubd | |- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) = ( ( ( A + ( 2 x. _pi ) ) - ( A - z ) ) + ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
| 46 | 2 | recnd | |- ( ( A e. RR /\ z e. RR ) -> A e. CC ) |
| 47 | 5 | recni | |- ( 2 x. _pi ) e. CC |
| 48 | 47 | a1i | |- ( ( A e. RR /\ z e. RR ) -> ( 2 x. _pi ) e. CC ) |
| 49 | simpr | |- ( ( A e. RR /\ z e. RR ) -> z e. RR ) |
|
| 50 | 49 | recnd | |- ( ( A e. RR /\ z e. RR ) -> z e. CC ) |
| 51 | 46 48 50 | pnncand | |- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( 2 x. _pi ) ) - ( A - z ) ) = ( ( 2 x. _pi ) + z ) ) |
| 52 | 51 | oveq1d | |- ( ( A e. RR /\ z e. RR ) -> ( ( ( A + ( 2 x. _pi ) ) - ( A - z ) ) + ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) = ( ( ( 2 x. _pi ) + z ) + ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
| 53 | 33 45 52 | 3eqtrd | |- ( ( A e. RR /\ z e. RR ) -> ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) = ( ( ( 2 x. _pi ) + z ) + ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
| 54 | 53 | oveq2d | |- ( ( A e. RR /\ z e. RR ) -> ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) = ( z - ( ( ( 2 x. _pi ) + z ) + ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) ) |
| 55 | addcl | |- ( ( ( 2 x. _pi ) e. CC /\ z e. CC ) -> ( ( 2 x. _pi ) + z ) e. CC ) |
|
| 56 | 47 50 55 | sylancr | |- ( ( A e. RR /\ z e. RR ) -> ( ( 2 x. _pi ) + z ) e. CC ) |
| 57 | 50 56 44 | subsub4d | |- ( ( A e. RR /\ z e. RR ) -> ( ( z - ( ( 2 x. _pi ) + z ) ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) = ( z - ( ( ( 2 x. _pi ) + z ) + ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) ) |
| 58 | 56 50 | negsubdi2d | |- ( ( A e. RR /\ z e. RR ) -> -u ( ( ( 2 x. _pi ) + z ) - z ) = ( z - ( ( 2 x. _pi ) + z ) ) ) |
| 59 | 48 50 | pncand | |- ( ( A e. RR /\ z e. RR ) -> ( ( ( 2 x. _pi ) + z ) - z ) = ( 2 x. _pi ) ) |
| 60 | 59 | negeqd | |- ( ( A e. RR /\ z e. RR ) -> -u ( ( ( 2 x. _pi ) + z ) - z ) = -u ( 2 x. _pi ) ) |
| 61 | 58 60 | eqtr3d | |- ( ( A e. RR /\ z e. RR ) -> ( z - ( ( 2 x. _pi ) + z ) ) = -u ( 2 x. _pi ) ) |
| 62 | neg1cn | |- -u 1 e. CC |
|
| 63 | 47 | mulm1i | |- ( -u 1 x. ( 2 x. _pi ) ) = -u ( 2 x. _pi ) |
| 64 | 62 47 63 | mulcomli | |- ( ( 2 x. _pi ) x. -u 1 ) = -u ( 2 x. _pi ) |
| 65 | 61 64 | eqtr4di | |- ( ( A e. RR /\ z e. RR ) -> ( z - ( ( 2 x. _pi ) + z ) ) = ( ( 2 x. _pi ) x. -u 1 ) ) |
| 66 | 65 | oveq1d | |- ( ( A e. RR /\ z e. RR ) -> ( ( z - ( ( 2 x. _pi ) + z ) ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) = ( ( ( 2 x. _pi ) x. -u 1 ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
| 67 | 62 | a1i | |- ( ( A e. RR /\ z e. RR ) -> -u 1 e. CC ) |
| 68 | 40 | zcnd | |- ( ( A e. RR /\ z e. RR ) -> ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) e. CC ) |
| 69 | 48 67 68 | subdid | |- ( ( A e. RR /\ z e. RR ) -> ( ( 2 x. _pi ) x. ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) = ( ( ( 2 x. _pi ) x. -u 1 ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
| 70 | 66 69 | eqtr4d | |- ( ( A e. RR /\ z e. RR ) -> ( ( z - ( ( 2 x. _pi ) + z ) ) - ( ( 2 x. _pi ) x. ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) = ( ( 2 x. _pi ) x. ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
| 71 | 54 57 70 | 3eqtr2d | |- ( ( A e. RR /\ z e. RR ) -> ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) = ( ( 2 x. _pi ) x. ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) ) |
| 72 | 71 | oveq1d | |- ( ( A e. RR /\ z e. RR ) -> ( ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) / ( 2 x. _pi ) ) = ( ( ( 2 x. _pi ) x. ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) / ( 2 x. _pi ) ) ) |
| 73 | neg1z | |- -u 1 e. ZZ |
|
| 74 | zsubcl | |- ( ( -u 1 e. ZZ /\ ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) e. ZZ ) -> ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) e. ZZ ) |
|
| 75 | 73 40 74 | sylancr | |- ( ( A e. RR /\ z e. RR ) -> ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) e. ZZ ) |
| 76 | 75 | zcnd | |- ( ( A e. RR /\ z e. RR ) -> ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) e. CC ) |
| 77 | divcan3 | |- ( ( ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) e. CC /\ ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) -> ( ( ( 2 x. _pi ) x. ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) / ( 2 x. _pi ) ) = ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) |
|
| 78 | 47 36 77 | mp3an23 | |- ( ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) e. CC -> ( ( ( 2 x. _pi ) x. ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) / ( 2 x. _pi ) ) = ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) |
| 79 | 76 78 | syl | |- ( ( A e. RR /\ z e. RR ) -> ( ( ( 2 x. _pi ) x. ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) / ( 2 x. _pi ) ) = ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) |
| 80 | 72 79 | eqtrd | |- ( ( A e. RR /\ z e. RR ) -> ( ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) / ( 2 x. _pi ) ) = ( -u 1 - ( |_ ` ( ( A - z ) / ( 2 x. _pi ) ) ) ) ) |
| 81 | 80 75 | eqeltrd | |- ( ( A e. RR /\ z e. RR ) -> ( ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) / ( 2 x. _pi ) ) e. ZZ ) |
| 82 | oveq2 | |- ( y = ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) -> ( z - y ) = ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) ) |
|
| 83 | 82 | oveq1d | |- ( y = ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) -> ( ( z - y ) / ( 2 x. _pi ) ) = ( ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) / ( 2 x. _pi ) ) ) |
| 84 | 83 | eleq1d | |- ( y = ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) -> ( ( ( z - y ) / ( 2 x. _pi ) ) e. ZZ <-> ( ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) / ( 2 x. _pi ) ) e. ZZ ) ) |
| 85 | 84 | rspcev | |- ( ( ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) e. D /\ ( ( z - ( ( A + ( 2 x. _pi ) ) - ( ( A - z ) mod ( 2 x. _pi ) ) ) ) / ( 2 x. _pi ) ) e. ZZ ) -> E. y e. D ( ( z - y ) / ( 2 x. _pi ) ) e. ZZ ) |
| 86 | 30 81 85 | syl2anc | |- ( ( A e. RR /\ z e. RR ) -> E. y e. D ( ( z - y ) / ( 2 x. _pi ) ) e. ZZ ) |