This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function of an imaginary number maps any open-below, closed-above interval of length 2 _pi one-to-one onto the unit circle. (Contributed by Paul Chapman, 16-Mar-2008) (Revised by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efif1o.1 | |- F = ( w e. D |-> ( exp ` ( _i x. w ) ) ) |
|
| efif1o.2 | |- C = ( `' abs " { 1 } ) |
||
| efif1o.3 | |- D = ( A (,] ( A + ( 2 x. _pi ) ) ) |
||
| Assertion | efif1o | |- ( A e. RR -> F : D -1-1-onto-> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efif1o.1 | |- F = ( w e. D |-> ( exp ` ( _i x. w ) ) ) |
|
| 2 | efif1o.2 | |- C = ( `' abs " { 1 } ) |
|
| 3 | efif1o.3 | |- D = ( A (,] ( A + ( 2 x. _pi ) ) ) |
|
| 4 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 5 | 2re | |- 2 e. RR |
|
| 6 | pire | |- _pi e. RR |
|
| 7 | 5 6 | remulcli | |- ( 2 x. _pi ) e. RR |
| 8 | readdcl | |- ( ( A e. RR /\ ( 2 x. _pi ) e. RR ) -> ( A + ( 2 x. _pi ) ) e. RR ) |
|
| 9 | 7 8 | mpan2 | |- ( A e. RR -> ( A + ( 2 x. _pi ) ) e. RR ) |
| 10 | elioc2 | |- ( ( A e. RR* /\ ( A + ( 2 x. _pi ) ) e. RR ) -> ( x e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( x e. RR /\ A < x /\ x <_ ( A + ( 2 x. _pi ) ) ) ) ) |
|
| 11 | 4 9 10 | syl2anc | |- ( A e. RR -> ( x e. ( A (,] ( A + ( 2 x. _pi ) ) ) <-> ( x e. RR /\ A < x /\ x <_ ( A + ( 2 x. _pi ) ) ) ) ) |
| 12 | simp1 | |- ( ( x e. RR /\ A < x /\ x <_ ( A + ( 2 x. _pi ) ) ) -> x e. RR ) |
|
| 13 | 11 12 | biimtrdi | |- ( A e. RR -> ( x e. ( A (,] ( A + ( 2 x. _pi ) ) ) -> x e. RR ) ) |
| 14 | 13 | ssrdv | |- ( A e. RR -> ( A (,] ( A + ( 2 x. _pi ) ) ) C_ RR ) |
| 15 | 3 14 | eqsstrid | |- ( A e. RR -> D C_ RR ) |
| 16 | 3 | efif1olem1 | |- ( ( A e. RR /\ ( x e. D /\ y e. D ) ) -> ( abs ` ( x - y ) ) < ( 2 x. _pi ) ) |
| 17 | 3 | efif1olem2 | |- ( ( A e. RR /\ z e. RR ) -> E. y e. D ( ( z - y ) / ( 2 x. _pi ) ) e. ZZ ) |
| 18 | eqid | |- ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) = ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
|
| 19 | 1 2 15 16 17 18 | efif1olem4 | |- ( A e. RR -> F : D -1-1-onto-> C ) |