This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the pair swapping function on 2o . (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2oconcl | |- ( A e. 2o -> ( 1o \ A ) e. 2o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri | |- ( A e. { (/) , 1o } -> ( A = (/) \/ A = 1o ) ) |
|
| 2 | difeq2 | |- ( A = (/) -> ( 1o \ A ) = ( 1o \ (/) ) ) |
|
| 3 | dif0 | |- ( 1o \ (/) ) = 1o |
|
| 4 | 2 3 | eqtrdi | |- ( A = (/) -> ( 1o \ A ) = 1o ) |
| 5 | difeq2 | |- ( A = 1o -> ( 1o \ A ) = ( 1o \ 1o ) ) |
|
| 6 | difid | |- ( 1o \ 1o ) = (/) |
|
| 7 | 5 6 | eqtrdi | |- ( A = 1o -> ( 1o \ A ) = (/) ) |
| 8 | 4 7 | orim12i | |- ( ( A = (/) \/ A = 1o ) -> ( ( 1o \ A ) = 1o \/ ( 1o \ A ) = (/) ) ) |
| 9 | 8 | orcomd | |- ( ( A = (/) \/ A = 1o ) -> ( ( 1o \ A ) = (/) \/ ( 1o \ A ) = 1o ) ) |
| 10 | 1 9 | syl | |- ( A e. { (/) , 1o } -> ( ( 1o \ A ) = (/) \/ ( 1o \ A ) = 1o ) ) |
| 11 | 1on | |- 1o e. On |
|
| 12 | difexg | |- ( 1o e. On -> ( 1o \ A ) e. _V ) |
|
| 13 | 11 12 | ax-mp | |- ( 1o \ A ) e. _V |
| 14 | 13 | elpr | |- ( ( 1o \ A ) e. { (/) , 1o } <-> ( ( 1o \ A ) = (/) \/ ( 1o \ A ) = 1o ) ) |
| 15 | 10 14 | sylibr | |- ( A e. { (/) , 1o } -> ( 1o \ A ) e. { (/) , 1o } ) |
| 16 | df2o3 | |- 2o = { (/) , 1o } |
|
| 17 | 15 16 | eleqtrrdi | |- ( A e. { (/) , 1o } -> ( 1o \ A ) e. 2o ) |
| 18 | 17 16 | eleq2s | |- ( A e. 2o -> ( 1o \ A ) e. 2o ) |