This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of equivalence relation in terms of an operation. (Contributed by NM, 15-Feb-1996) (Proof shortened by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eceqoveq.5 | |- .~ Er ( S X. S ) |
|
| eceqoveq.7 | |- dom .+ = ( S X. S ) |
||
| eceqoveq.8 | |- -. (/) e. S |
||
| eceqoveq.9 | |- ( ( x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
||
| eceqoveq.10 | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <. A , B >. .~ <. C , D >. <-> ( A .+ D ) = ( B .+ C ) ) ) |
||
| Assertion | eceqoveq | |- ( ( A e. S /\ C e. S ) -> ( [ <. A , B >. ] .~ = [ <. C , D >. ] .~ <-> ( A .+ D ) = ( B .+ C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eceqoveq.5 | |- .~ Er ( S X. S ) |
|
| 2 | eceqoveq.7 | |- dom .+ = ( S X. S ) |
|
| 3 | eceqoveq.8 | |- -. (/) e. S |
|
| 4 | eceqoveq.9 | |- ( ( x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
|
| 5 | eceqoveq.10 | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <. A , B >. .~ <. C , D >. <-> ( A .+ D ) = ( B .+ C ) ) ) |
|
| 6 | opelxpi | |- ( ( A e. S /\ B e. S ) -> <. A , B >. e. ( S X. S ) ) |
|
| 7 | 6 | ad2antrr | |- ( ( ( ( A e. S /\ B e. S ) /\ C e. S ) /\ [ <. A , B >. ] .~ = [ <. C , D >. ] .~ ) -> <. A , B >. e. ( S X. S ) ) |
| 8 | 1 | a1i | |- ( ( ( ( A e. S /\ B e. S ) /\ C e. S ) /\ [ <. A , B >. ] .~ = [ <. C , D >. ] .~ ) -> .~ Er ( S X. S ) ) |
| 9 | simpr | |- ( ( ( ( A e. S /\ B e. S ) /\ C e. S ) /\ [ <. A , B >. ] .~ = [ <. C , D >. ] .~ ) -> [ <. A , B >. ] .~ = [ <. C , D >. ] .~ ) |
|
| 10 | 8 9 | ereldm | |- ( ( ( ( A e. S /\ B e. S ) /\ C e. S ) /\ [ <. A , B >. ] .~ = [ <. C , D >. ] .~ ) -> ( <. A , B >. e. ( S X. S ) <-> <. C , D >. e. ( S X. S ) ) ) |
| 11 | 7 10 | mpbid | |- ( ( ( ( A e. S /\ B e. S ) /\ C e. S ) /\ [ <. A , B >. ] .~ = [ <. C , D >. ] .~ ) -> <. C , D >. e. ( S X. S ) ) |
| 12 | opelxp2 | |- ( <. C , D >. e. ( S X. S ) -> D e. S ) |
|
| 13 | 11 12 | syl | |- ( ( ( ( A e. S /\ B e. S ) /\ C e. S ) /\ [ <. A , B >. ] .~ = [ <. C , D >. ] .~ ) -> D e. S ) |
| 14 | 13 | ex | |- ( ( ( A e. S /\ B e. S ) /\ C e. S ) -> ( [ <. A , B >. ] .~ = [ <. C , D >. ] .~ -> D e. S ) ) |
| 15 | 4 | caovcl | |- ( ( B e. S /\ C e. S ) -> ( B .+ C ) e. S ) |
| 16 | eleq1 | |- ( ( A .+ D ) = ( B .+ C ) -> ( ( A .+ D ) e. S <-> ( B .+ C ) e. S ) ) |
|
| 17 | 15 16 | imbitrrid | |- ( ( A .+ D ) = ( B .+ C ) -> ( ( B e. S /\ C e. S ) -> ( A .+ D ) e. S ) ) |
| 18 | 2 3 | ndmovrcl | |- ( ( A .+ D ) e. S -> ( A e. S /\ D e. S ) ) |
| 19 | 18 | simprd | |- ( ( A .+ D ) e. S -> D e. S ) |
| 20 | 17 19 | syl6com | |- ( ( B e. S /\ C e. S ) -> ( ( A .+ D ) = ( B .+ C ) -> D e. S ) ) |
| 21 | 20 | adantll | |- ( ( ( A e. S /\ B e. S ) /\ C e. S ) -> ( ( A .+ D ) = ( B .+ C ) -> D e. S ) ) |
| 22 | 1 | a1i | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> .~ Er ( S X. S ) ) |
| 23 | 6 | adantr | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <. A , B >. e. ( S X. S ) ) |
| 24 | 22 23 | erth | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <. A , B >. .~ <. C , D >. <-> [ <. A , B >. ] .~ = [ <. C , D >. ] .~ ) ) |
| 25 | 24 5 | bitr3d | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( [ <. A , B >. ] .~ = [ <. C , D >. ] .~ <-> ( A .+ D ) = ( B .+ C ) ) ) |
| 26 | 25 | expr | |- ( ( ( A e. S /\ B e. S ) /\ C e. S ) -> ( D e. S -> ( [ <. A , B >. ] .~ = [ <. C , D >. ] .~ <-> ( A .+ D ) = ( B .+ C ) ) ) ) |
| 27 | 14 21 26 | pm5.21ndd | |- ( ( ( A e. S /\ B e. S ) /\ C e. S ) -> ( [ <. A , B >. ] .~ = [ <. C , D >. ] .~ <-> ( A .+ D ) = ( B .+ C ) ) ) |
| 28 | 27 | an32s | |- ( ( ( A e. S /\ C e. S ) /\ B e. S ) -> ( [ <. A , B >. ] .~ = [ <. C , D >. ] .~ <-> ( A .+ D ) = ( B .+ C ) ) ) |
| 29 | eqcom | |- ( (/) = [ <. C , D >. ] .~ <-> [ <. C , D >. ] .~ = (/) ) |
|
| 30 | erdm | |- ( .~ Er ( S X. S ) -> dom .~ = ( S X. S ) ) |
|
| 31 | 1 30 | ax-mp | |- dom .~ = ( S X. S ) |
| 32 | 31 | eleq2i | |- ( <. C , D >. e. dom .~ <-> <. C , D >. e. ( S X. S ) ) |
| 33 | ecdmn0 | |- ( <. C , D >. e. dom .~ <-> [ <. C , D >. ] .~ =/= (/) ) |
|
| 34 | opelxp | |- ( <. C , D >. e. ( S X. S ) <-> ( C e. S /\ D e. S ) ) |
|
| 35 | 32 33 34 | 3bitr3i | |- ( [ <. C , D >. ] .~ =/= (/) <-> ( C e. S /\ D e. S ) ) |
| 36 | 35 | simplbi2 | |- ( C e. S -> ( D e. S -> [ <. C , D >. ] .~ =/= (/) ) ) |
| 37 | 36 | ad2antlr | |- ( ( ( A e. S /\ C e. S ) /\ -. B e. S ) -> ( D e. S -> [ <. C , D >. ] .~ =/= (/) ) ) |
| 38 | 37 | necon2bd | |- ( ( ( A e. S /\ C e. S ) /\ -. B e. S ) -> ( [ <. C , D >. ] .~ = (/) -> -. D e. S ) ) |
| 39 | simpr | |- ( ( A e. S /\ D e. S ) -> D e. S ) |
|
| 40 | 2 | ndmov | |- ( -. ( A e. S /\ D e. S ) -> ( A .+ D ) = (/) ) |
| 41 | 39 40 | nsyl5 | |- ( -. D e. S -> ( A .+ D ) = (/) ) |
| 42 | 38 41 | syl6 | |- ( ( ( A e. S /\ C e. S ) /\ -. B e. S ) -> ( [ <. C , D >. ] .~ = (/) -> ( A .+ D ) = (/) ) ) |
| 43 | eleq1 | |- ( ( A .+ D ) = (/) -> ( ( A .+ D ) e. S <-> (/) e. S ) ) |
|
| 44 | 3 43 | mtbiri | |- ( ( A .+ D ) = (/) -> -. ( A .+ D ) e. S ) |
| 45 | 35 | simprbi | |- ( [ <. C , D >. ] .~ =/= (/) -> D e. S ) |
| 46 | 4 | caovcl | |- ( ( A e. S /\ D e. S ) -> ( A .+ D ) e. S ) |
| 47 | 46 | ex | |- ( A e. S -> ( D e. S -> ( A .+ D ) e. S ) ) |
| 48 | 47 | ad2antrr | |- ( ( ( A e. S /\ C e. S ) /\ -. B e. S ) -> ( D e. S -> ( A .+ D ) e. S ) ) |
| 49 | 45 48 | syl5 | |- ( ( ( A e. S /\ C e. S ) /\ -. B e. S ) -> ( [ <. C , D >. ] .~ =/= (/) -> ( A .+ D ) e. S ) ) |
| 50 | 49 | necon1bd | |- ( ( ( A e. S /\ C e. S ) /\ -. B e. S ) -> ( -. ( A .+ D ) e. S -> [ <. C , D >. ] .~ = (/) ) ) |
| 51 | 44 50 | syl5 | |- ( ( ( A e. S /\ C e. S ) /\ -. B e. S ) -> ( ( A .+ D ) = (/) -> [ <. C , D >. ] .~ = (/) ) ) |
| 52 | 42 51 | impbid | |- ( ( ( A e. S /\ C e. S ) /\ -. B e. S ) -> ( [ <. C , D >. ] .~ = (/) <-> ( A .+ D ) = (/) ) ) |
| 53 | 29 52 | bitrid | |- ( ( ( A e. S /\ C e. S ) /\ -. B e. S ) -> ( (/) = [ <. C , D >. ] .~ <-> ( A .+ D ) = (/) ) ) |
| 54 | 31 | eleq2i | |- ( <. A , B >. e. dom .~ <-> <. A , B >. e. ( S X. S ) ) |
| 55 | ecdmn0 | |- ( <. A , B >. e. dom .~ <-> [ <. A , B >. ] .~ =/= (/) ) |
|
| 56 | opelxp | |- ( <. A , B >. e. ( S X. S ) <-> ( A e. S /\ B e. S ) ) |
|
| 57 | 54 55 56 | 3bitr3i | |- ( [ <. A , B >. ] .~ =/= (/) <-> ( A e. S /\ B e. S ) ) |
| 58 | 57 | simprbi | |- ( [ <. A , B >. ] .~ =/= (/) -> B e. S ) |
| 59 | 58 | necon1bi | |- ( -. B e. S -> [ <. A , B >. ] .~ = (/) ) |
| 60 | 59 | adantl | |- ( ( ( A e. S /\ C e. S ) /\ -. B e. S ) -> [ <. A , B >. ] .~ = (/) ) |
| 61 | 60 | eqeq1d | |- ( ( ( A e. S /\ C e. S ) /\ -. B e. S ) -> ( [ <. A , B >. ] .~ = [ <. C , D >. ] .~ <-> (/) = [ <. C , D >. ] .~ ) ) |
| 62 | simpl | |- ( ( B e. S /\ C e. S ) -> B e. S ) |
|
| 63 | 2 | ndmov | |- ( -. ( B e. S /\ C e. S ) -> ( B .+ C ) = (/) ) |
| 64 | 62 63 | nsyl5 | |- ( -. B e. S -> ( B .+ C ) = (/) ) |
| 65 | 64 | adantl | |- ( ( ( A e. S /\ C e. S ) /\ -. B e. S ) -> ( B .+ C ) = (/) ) |
| 66 | 65 | eqeq2d | |- ( ( ( A e. S /\ C e. S ) /\ -. B e. S ) -> ( ( A .+ D ) = ( B .+ C ) <-> ( A .+ D ) = (/) ) ) |
| 67 | 53 61 66 | 3bitr4d | |- ( ( ( A e. S /\ C e. S ) /\ -. B e. S ) -> ( [ <. A , B >. ] .~ = [ <. C , D >. ] .~ <-> ( A .+ D ) = ( B .+ C ) ) ) |
| 68 | 28 67 | pm2.61dan | |- ( ( A e. S /\ C e. S ) -> ( [ <. A , B >. ] .~ = [ <. C , D >. ] .~ <-> ( A .+ D ) = ( B .+ C ) ) ) |