This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to transfer a commutative law via an equivalence relation. (Contributed by NM, 29-Aug-1995) (Revised by David Abernethy, 4-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecovcom.1 | |- C = ( ( S X. S ) /. .~ ) |
|
| ecovcom.2 | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) = [ <. D , G >. ] .~ ) |
||
| ecovcom.3 | |- ( ( ( z e. S /\ w e. S ) /\ ( x e. S /\ y e. S ) ) -> ( [ <. z , w >. ] .~ .+ [ <. x , y >. ] .~ ) = [ <. H , J >. ] .~ ) |
||
| ecovcom.4 | |- D = H |
||
| ecovcom.5 | |- G = J |
||
| Assertion | ecovcom | |- ( ( A e. C /\ B e. C ) -> ( A .+ B ) = ( B .+ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecovcom.1 | |- C = ( ( S X. S ) /. .~ ) |
|
| 2 | ecovcom.2 | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) = [ <. D , G >. ] .~ ) |
|
| 3 | ecovcom.3 | |- ( ( ( z e. S /\ w e. S ) /\ ( x e. S /\ y e. S ) ) -> ( [ <. z , w >. ] .~ .+ [ <. x , y >. ] .~ ) = [ <. H , J >. ] .~ ) |
|
| 4 | ecovcom.4 | |- D = H |
|
| 5 | ecovcom.5 | |- G = J |
|
| 6 | oveq1 | |- ( [ <. x , y >. ] .~ = A -> ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) = ( A .+ [ <. z , w >. ] .~ ) ) |
|
| 7 | oveq2 | |- ( [ <. x , y >. ] .~ = A -> ( [ <. z , w >. ] .~ .+ [ <. x , y >. ] .~ ) = ( [ <. z , w >. ] .~ .+ A ) ) |
|
| 8 | 6 7 | eqeq12d | |- ( [ <. x , y >. ] .~ = A -> ( ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) = ( [ <. z , w >. ] .~ .+ [ <. x , y >. ] .~ ) <-> ( A .+ [ <. z , w >. ] .~ ) = ( [ <. z , w >. ] .~ .+ A ) ) ) |
| 9 | oveq2 | |- ( [ <. z , w >. ] .~ = B -> ( A .+ [ <. z , w >. ] .~ ) = ( A .+ B ) ) |
|
| 10 | oveq1 | |- ( [ <. z , w >. ] .~ = B -> ( [ <. z , w >. ] .~ .+ A ) = ( B .+ A ) ) |
|
| 11 | 9 10 | eqeq12d | |- ( [ <. z , w >. ] .~ = B -> ( ( A .+ [ <. z , w >. ] .~ ) = ( [ <. z , w >. ] .~ .+ A ) <-> ( A .+ B ) = ( B .+ A ) ) ) |
| 12 | opeq12 | |- ( ( D = H /\ G = J ) -> <. D , G >. = <. H , J >. ) |
|
| 13 | 12 | eceq1d | |- ( ( D = H /\ G = J ) -> [ <. D , G >. ] .~ = [ <. H , J >. ] .~ ) |
| 14 | 4 5 13 | mp2an | |- [ <. D , G >. ] .~ = [ <. H , J >. ] .~ |
| 15 | 3 | ancoms | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( [ <. z , w >. ] .~ .+ [ <. x , y >. ] .~ ) = [ <. H , J >. ] .~ ) |
| 16 | 14 2 15 | 3eqtr4a | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) = ( [ <. z , w >. ] .~ .+ [ <. x , y >. ] .~ ) ) |
| 17 | 1 8 11 16 | 2ecoptocl | |- ( ( A e. C /\ B e. C ) -> ( A .+ B ) = ( B .+ A ) ) |