This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ereldm.1 | |- ( ph -> R Er X ) |
|
| ereldm.2 | |- ( ph -> [ A ] R = [ B ] R ) |
||
| Assertion | ereldm | |- ( ph -> ( A e. X <-> B e. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ereldm.1 | |- ( ph -> R Er X ) |
|
| 2 | ereldm.2 | |- ( ph -> [ A ] R = [ B ] R ) |
|
| 3 | 2 | neeq1d | |- ( ph -> ( [ A ] R =/= (/) <-> [ B ] R =/= (/) ) ) |
| 4 | ecdmn0 | |- ( A e. dom R <-> [ A ] R =/= (/) ) |
|
| 5 | ecdmn0 | |- ( B e. dom R <-> [ B ] R =/= (/) ) |
|
| 6 | 3 4 5 | 3bitr4g | |- ( ph -> ( A e. dom R <-> B e. dom R ) ) |
| 7 | erdm | |- ( R Er X -> dom R = X ) |
|
| 8 | 1 7 | syl | |- ( ph -> dom R = X ) |
| 9 | 8 | eleq2d | |- ( ph -> ( A e. dom R <-> A e. X ) ) |
| 10 | 8 | eleq2d | |- ( ph -> ( B e. dom R <-> B e. X ) ) |
| 11 | 6 9 10 | 3bitr3d | |- ( ph -> ( A e. X <-> B e. X ) ) |