This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of equivalence relation in terms of an operation. (Contributed by NM, 15-Feb-1996) (Proof shortened by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eceqoveq.5 | ⊢ ∼ Er ( 𝑆 × 𝑆 ) | |
| eceqoveq.7 | ⊢ dom + = ( 𝑆 × 𝑆 ) | ||
| eceqoveq.8 | ⊢ ¬ ∅ ∈ 𝑆 | ||
| eceqoveq.9 | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | ||
| eceqoveq.10 | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 〈 𝐴 , 𝐵 〉 ∼ 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 + 𝐷 ) = ( 𝐵 + 𝐶 ) ) ) | ||
| Assertion | eceqoveq | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( [ 〈 𝐴 , 𝐵 〉 ] ∼ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ↔ ( 𝐴 + 𝐷 ) = ( 𝐵 + 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eceqoveq.5 | ⊢ ∼ Er ( 𝑆 × 𝑆 ) | |
| 2 | eceqoveq.7 | ⊢ dom + = ( 𝑆 × 𝑆 ) | |
| 3 | eceqoveq.8 | ⊢ ¬ ∅ ∈ 𝑆 | |
| 4 | eceqoveq.9 | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 5 | eceqoveq.10 | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 〈 𝐴 , 𝐵 〉 ∼ 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 + 𝐷 ) = ( 𝐵 + 𝐶 ) ) ) | |
| 6 | opelxpi | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑆 × 𝑆 ) ) | |
| 7 | 6 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑆 ) ∧ [ 〈 𝐴 , 𝐵 〉 ] ∼ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑆 × 𝑆 ) ) |
| 8 | 1 | a1i | ⊢ ( ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑆 ) ∧ [ 〈 𝐴 , 𝐵 〉 ] ∼ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ) → ∼ Er ( 𝑆 × 𝑆 ) ) |
| 9 | simpr | ⊢ ( ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑆 ) ∧ [ 〈 𝐴 , 𝐵 〉 ] ∼ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ) → [ 〈 𝐴 , 𝐵 〉 ] ∼ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ) | |
| 10 | 8 9 | ereldm | ⊢ ( ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑆 ) ∧ [ 〈 𝐴 , 𝐵 〉 ] ∼ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ) → ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑆 × 𝑆 ) ↔ 〈 𝐶 , 𝐷 〉 ∈ ( 𝑆 × 𝑆 ) ) ) |
| 11 | 7 10 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑆 ) ∧ [ 〈 𝐴 , 𝐵 〉 ] ∼ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ) → 〈 𝐶 , 𝐷 〉 ∈ ( 𝑆 × 𝑆 ) ) |
| 12 | opelxp2 | ⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ( 𝑆 × 𝑆 ) → 𝐷 ∈ 𝑆 ) | |
| 13 | 11 12 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑆 ) ∧ [ 〈 𝐴 , 𝐵 〉 ] ∼ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ) → 𝐷 ∈ 𝑆 ) |
| 14 | 13 | ex | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑆 ) → ( [ 〈 𝐴 , 𝐵 〉 ] ∼ = [ 〈 𝐶 , 𝐷 〉 ] ∼ → 𝐷 ∈ 𝑆 ) ) |
| 15 | 4 | caovcl | ⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐵 + 𝐶 ) ∈ 𝑆 ) |
| 16 | eleq1 | ⊢ ( ( 𝐴 + 𝐷 ) = ( 𝐵 + 𝐶 ) → ( ( 𝐴 + 𝐷 ) ∈ 𝑆 ↔ ( 𝐵 + 𝐶 ) ∈ 𝑆 ) ) | |
| 17 | 15 16 | imbitrrid | ⊢ ( ( 𝐴 + 𝐷 ) = ( 𝐵 + 𝐶 ) → ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 + 𝐷 ) ∈ 𝑆 ) ) |
| 18 | 2 3 | ndmovrcl | ⊢ ( ( 𝐴 + 𝐷 ) ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) |
| 19 | 18 | simprd | ⊢ ( ( 𝐴 + 𝐷 ) ∈ 𝑆 → 𝐷 ∈ 𝑆 ) |
| 20 | 17 19 | syl6com | ⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( ( 𝐴 + 𝐷 ) = ( 𝐵 + 𝐶 ) → 𝐷 ∈ 𝑆 ) ) |
| 21 | 20 | adantll | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑆 ) → ( ( 𝐴 + 𝐷 ) = ( 𝐵 + 𝐶 ) → 𝐷 ∈ 𝑆 ) ) |
| 22 | 1 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ∼ Er ( 𝑆 × 𝑆 ) ) |
| 23 | 6 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑆 × 𝑆 ) ) |
| 24 | 22 23 | erth | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 〈 𝐴 , 𝐵 〉 ∼ 〈 𝐶 , 𝐷 〉 ↔ [ 〈 𝐴 , 𝐵 〉 ] ∼ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ) ) |
| 25 | 24 5 | bitr3d | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( [ 〈 𝐴 , 𝐵 〉 ] ∼ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ↔ ( 𝐴 + 𝐷 ) = ( 𝐵 + 𝐶 ) ) ) |
| 26 | 25 | expr | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑆 ) → ( 𝐷 ∈ 𝑆 → ( [ 〈 𝐴 , 𝐵 〉 ] ∼ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ↔ ( 𝐴 + 𝐷 ) = ( 𝐵 + 𝐶 ) ) ) ) |
| 27 | 14 21 26 | pm5.21ndd | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑆 ) → ( [ 〈 𝐴 , 𝐵 〉 ] ∼ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ↔ ( 𝐴 + 𝐷 ) = ( 𝐵 + 𝐶 ) ) ) |
| 28 | 27 | an32s | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝑆 ) → ( [ 〈 𝐴 , 𝐵 〉 ] ∼ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ↔ ( 𝐴 + 𝐷 ) = ( 𝐵 + 𝐶 ) ) ) |
| 29 | eqcom | ⊢ ( ∅ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ↔ [ 〈 𝐶 , 𝐷 〉 ] ∼ = ∅ ) | |
| 30 | erdm | ⊢ ( ∼ Er ( 𝑆 × 𝑆 ) → dom ∼ = ( 𝑆 × 𝑆 ) ) | |
| 31 | 1 30 | ax-mp | ⊢ dom ∼ = ( 𝑆 × 𝑆 ) |
| 32 | 31 | eleq2i | ⊢ ( 〈 𝐶 , 𝐷 〉 ∈ dom ∼ ↔ 〈 𝐶 , 𝐷 〉 ∈ ( 𝑆 × 𝑆 ) ) |
| 33 | ecdmn0 | ⊢ ( 〈 𝐶 , 𝐷 〉 ∈ dom ∼ ↔ [ 〈 𝐶 , 𝐷 〉 ] ∼ ≠ ∅ ) | |
| 34 | opelxp | ⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ( 𝑆 × 𝑆 ) ↔ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) | |
| 35 | 32 33 34 | 3bitr3i | ⊢ ( [ 〈 𝐶 , 𝐷 〉 ] ∼ ≠ ∅ ↔ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) |
| 36 | 35 | simplbi2 | ⊢ ( 𝐶 ∈ 𝑆 → ( 𝐷 ∈ 𝑆 → [ 〈 𝐶 , 𝐷 〉 ] ∼ ≠ ∅ ) ) |
| 37 | 36 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ¬ 𝐵 ∈ 𝑆 ) → ( 𝐷 ∈ 𝑆 → [ 〈 𝐶 , 𝐷 〉 ] ∼ ≠ ∅ ) ) |
| 38 | 37 | necon2bd | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ¬ 𝐵 ∈ 𝑆 ) → ( [ 〈 𝐶 , 𝐷 〉 ] ∼ = ∅ → ¬ 𝐷 ∈ 𝑆 ) ) |
| 39 | simpr | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) → 𝐷 ∈ 𝑆 ) | |
| 40 | 2 | ndmov | ⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) → ( 𝐴 + 𝐷 ) = ∅ ) |
| 41 | 39 40 | nsyl5 | ⊢ ( ¬ 𝐷 ∈ 𝑆 → ( 𝐴 + 𝐷 ) = ∅ ) |
| 42 | 38 41 | syl6 | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ¬ 𝐵 ∈ 𝑆 ) → ( [ 〈 𝐶 , 𝐷 〉 ] ∼ = ∅ → ( 𝐴 + 𝐷 ) = ∅ ) ) |
| 43 | eleq1 | ⊢ ( ( 𝐴 + 𝐷 ) = ∅ → ( ( 𝐴 + 𝐷 ) ∈ 𝑆 ↔ ∅ ∈ 𝑆 ) ) | |
| 44 | 3 43 | mtbiri | ⊢ ( ( 𝐴 + 𝐷 ) = ∅ → ¬ ( 𝐴 + 𝐷 ) ∈ 𝑆 ) |
| 45 | 35 | simprbi | ⊢ ( [ 〈 𝐶 , 𝐷 〉 ] ∼ ≠ ∅ → 𝐷 ∈ 𝑆 ) |
| 46 | 4 | caovcl | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) → ( 𝐴 + 𝐷 ) ∈ 𝑆 ) |
| 47 | 46 | ex | ⊢ ( 𝐴 ∈ 𝑆 → ( 𝐷 ∈ 𝑆 → ( 𝐴 + 𝐷 ) ∈ 𝑆 ) ) |
| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ¬ 𝐵 ∈ 𝑆 ) → ( 𝐷 ∈ 𝑆 → ( 𝐴 + 𝐷 ) ∈ 𝑆 ) ) |
| 49 | 45 48 | syl5 | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ¬ 𝐵 ∈ 𝑆 ) → ( [ 〈 𝐶 , 𝐷 〉 ] ∼ ≠ ∅ → ( 𝐴 + 𝐷 ) ∈ 𝑆 ) ) |
| 50 | 49 | necon1bd | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ¬ 𝐵 ∈ 𝑆 ) → ( ¬ ( 𝐴 + 𝐷 ) ∈ 𝑆 → [ 〈 𝐶 , 𝐷 〉 ] ∼ = ∅ ) ) |
| 51 | 44 50 | syl5 | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ¬ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 + 𝐷 ) = ∅ → [ 〈 𝐶 , 𝐷 〉 ] ∼ = ∅ ) ) |
| 52 | 42 51 | impbid | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ¬ 𝐵 ∈ 𝑆 ) → ( [ 〈 𝐶 , 𝐷 〉 ] ∼ = ∅ ↔ ( 𝐴 + 𝐷 ) = ∅ ) ) |
| 53 | 29 52 | bitrid | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ¬ 𝐵 ∈ 𝑆 ) → ( ∅ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ↔ ( 𝐴 + 𝐷 ) = ∅ ) ) |
| 54 | 31 | eleq2i | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom ∼ ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑆 × 𝑆 ) ) |
| 55 | ecdmn0 | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom ∼ ↔ [ 〈 𝐴 , 𝐵 〉 ] ∼ ≠ ∅ ) | |
| 56 | opelxp | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑆 × 𝑆 ) ↔ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) | |
| 57 | 54 55 56 | 3bitr3i | ⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ∼ ≠ ∅ ↔ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 58 | 57 | simprbi | ⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ∼ ≠ ∅ → 𝐵 ∈ 𝑆 ) |
| 59 | 58 | necon1bi | ⊢ ( ¬ 𝐵 ∈ 𝑆 → [ 〈 𝐴 , 𝐵 〉 ] ∼ = ∅ ) |
| 60 | 59 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ¬ 𝐵 ∈ 𝑆 ) → [ 〈 𝐴 , 𝐵 〉 ] ∼ = ∅ ) |
| 61 | 60 | eqeq1d | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ¬ 𝐵 ∈ 𝑆 ) → ( [ 〈 𝐴 , 𝐵 〉 ] ∼ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ↔ ∅ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ) ) |
| 62 | simpl | ⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → 𝐵 ∈ 𝑆 ) | |
| 63 | 2 | ndmov | ⊢ ( ¬ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐵 + 𝐶 ) = ∅ ) |
| 64 | 62 63 | nsyl5 | ⊢ ( ¬ 𝐵 ∈ 𝑆 → ( 𝐵 + 𝐶 ) = ∅ ) |
| 65 | 64 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ¬ 𝐵 ∈ 𝑆 ) → ( 𝐵 + 𝐶 ) = ∅ ) |
| 66 | 65 | eqeq2d | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ¬ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 + 𝐷 ) = ( 𝐵 + 𝐶 ) ↔ ( 𝐴 + 𝐷 ) = ∅ ) ) |
| 67 | 53 61 66 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ¬ 𝐵 ∈ 𝑆 ) → ( [ 〈 𝐴 , 𝐵 〉 ] ∼ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ↔ ( 𝐴 + 𝐷 ) = ( 𝐵 + 𝐶 ) ) ) |
| 68 | 28 67 | pm2.61dan | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( [ 〈 𝐴 , 𝐵 〉 ] ∼ = [ 〈 𝐶 , 𝐷 〉 ] ∼ ↔ ( 𝐴 + 𝐷 ) = ( 𝐵 + 𝐶 ) ) ) |