This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Volume of a dyadic rational interval. (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| Assertion | dyadovol | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( vol* ` ( [,] ` ( A F B ) ) ) = ( 1 / ( 2 ^ B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| 2 | 1 | dyadval | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( A F B ) = <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. ) |
| 3 | 2 | fveq2d | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( [,] ` ( A F B ) ) = ( [,] ` <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. ) ) |
| 4 | df-ov | |- ( ( A / ( 2 ^ B ) ) [,] ( ( A + 1 ) / ( 2 ^ B ) ) ) = ( [,] ` <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. ) |
|
| 5 | 3 4 | eqtr4di | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( [,] ` ( A F B ) ) = ( ( A / ( 2 ^ B ) ) [,] ( ( A + 1 ) / ( 2 ^ B ) ) ) ) |
| 6 | 5 | fveq2d | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( vol* ` ( [,] ` ( A F B ) ) ) = ( vol* ` ( ( A / ( 2 ^ B ) ) [,] ( ( A + 1 ) / ( 2 ^ B ) ) ) ) ) |
| 7 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 8 | 2nn | |- 2 e. NN |
|
| 9 | nnexpcl | |- ( ( 2 e. NN /\ B e. NN0 ) -> ( 2 ^ B ) e. NN ) |
|
| 10 | 8 9 | mpan | |- ( B e. NN0 -> ( 2 ^ B ) e. NN ) |
| 11 | nndivre | |- ( ( A e. RR /\ ( 2 ^ B ) e. NN ) -> ( A / ( 2 ^ B ) ) e. RR ) |
|
| 12 | 7 10 11 | syl2an | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( A / ( 2 ^ B ) ) e. RR ) |
| 13 | peano2re | |- ( A e. RR -> ( A + 1 ) e. RR ) |
|
| 14 | 7 13 | syl | |- ( A e. ZZ -> ( A + 1 ) e. RR ) |
| 15 | nndivre | |- ( ( ( A + 1 ) e. RR /\ ( 2 ^ B ) e. NN ) -> ( ( A + 1 ) / ( 2 ^ B ) ) e. RR ) |
|
| 16 | 14 10 15 | syl2an | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( ( A + 1 ) / ( 2 ^ B ) ) e. RR ) |
| 17 | 7 | adantr | |- ( ( A e. ZZ /\ B e. NN0 ) -> A e. RR ) |
| 18 | 17 | lep1d | |- ( ( A e. ZZ /\ B e. NN0 ) -> A <_ ( A + 1 ) ) |
| 19 | 17 13 | syl | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( A + 1 ) e. RR ) |
| 20 | 10 | adantl | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( 2 ^ B ) e. NN ) |
| 21 | 20 | nnred | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( 2 ^ B ) e. RR ) |
| 22 | 20 | nngt0d | |- ( ( A e. ZZ /\ B e. NN0 ) -> 0 < ( 2 ^ B ) ) |
| 23 | lediv1 | |- ( ( A e. RR /\ ( A + 1 ) e. RR /\ ( ( 2 ^ B ) e. RR /\ 0 < ( 2 ^ B ) ) ) -> ( A <_ ( A + 1 ) <-> ( A / ( 2 ^ B ) ) <_ ( ( A + 1 ) / ( 2 ^ B ) ) ) ) |
|
| 24 | 17 19 21 22 23 | syl112anc | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( A <_ ( A + 1 ) <-> ( A / ( 2 ^ B ) ) <_ ( ( A + 1 ) / ( 2 ^ B ) ) ) ) |
| 25 | 18 24 | mpbid | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( A / ( 2 ^ B ) ) <_ ( ( A + 1 ) / ( 2 ^ B ) ) ) |
| 26 | ovolicc | |- ( ( ( A / ( 2 ^ B ) ) e. RR /\ ( ( A + 1 ) / ( 2 ^ B ) ) e. RR /\ ( A / ( 2 ^ B ) ) <_ ( ( A + 1 ) / ( 2 ^ B ) ) ) -> ( vol* ` ( ( A / ( 2 ^ B ) ) [,] ( ( A + 1 ) / ( 2 ^ B ) ) ) ) = ( ( ( A + 1 ) / ( 2 ^ B ) ) - ( A / ( 2 ^ B ) ) ) ) |
|
| 27 | 12 16 25 26 | syl3anc | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( vol* ` ( ( A / ( 2 ^ B ) ) [,] ( ( A + 1 ) / ( 2 ^ B ) ) ) ) = ( ( ( A + 1 ) / ( 2 ^ B ) ) - ( A / ( 2 ^ B ) ) ) ) |
| 28 | 19 | recnd | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( A + 1 ) e. CC ) |
| 29 | 17 | recnd | |- ( ( A e. ZZ /\ B e. NN0 ) -> A e. CC ) |
| 30 | 21 | recnd | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( 2 ^ B ) e. CC ) |
| 31 | 20 | nnne0d | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( 2 ^ B ) =/= 0 ) |
| 32 | 28 29 30 31 | divsubdird | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( ( ( A + 1 ) - A ) / ( 2 ^ B ) ) = ( ( ( A + 1 ) / ( 2 ^ B ) ) - ( A / ( 2 ^ B ) ) ) ) |
| 33 | ax-1cn | |- 1 e. CC |
|
| 34 | pncan2 | |- ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - A ) = 1 ) |
|
| 35 | 29 33 34 | sylancl | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( ( A + 1 ) - A ) = 1 ) |
| 36 | 35 | oveq1d | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( ( ( A + 1 ) - A ) / ( 2 ^ B ) ) = ( 1 / ( 2 ^ B ) ) ) |
| 37 | 32 36 | eqtr3d | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( ( ( A + 1 ) / ( 2 ^ B ) ) - ( A / ( 2 ^ B ) ) ) = ( 1 / ( 2 ^ B ) ) ) |
| 38 | 6 27 37 | 3eqtrd | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( vol* ` ( [,] ` ( A F B ) ) ) = ( 1 / ( 2 ^ B ) ) ) |