This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015) (Proof shortened by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| Assertion | dyadss | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) -> ( ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) -> D <_ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| 2 | simpr | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) |
|
| 3 | simpllr | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> B e. ZZ ) |
|
| 4 | simplrr | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> D e. NN0 ) |
|
| 5 | 1 | dyadval | |- ( ( B e. ZZ /\ D e. NN0 ) -> ( B F D ) = <. ( B / ( 2 ^ D ) ) , ( ( B + 1 ) / ( 2 ^ D ) ) >. ) |
| 6 | 3 4 5 | syl2anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( B F D ) = <. ( B / ( 2 ^ D ) ) , ( ( B + 1 ) / ( 2 ^ D ) ) >. ) |
| 7 | 6 | fveq2d | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( [,] ` ( B F D ) ) = ( [,] ` <. ( B / ( 2 ^ D ) ) , ( ( B + 1 ) / ( 2 ^ D ) ) >. ) ) |
| 8 | df-ov | |- ( ( B / ( 2 ^ D ) ) [,] ( ( B + 1 ) / ( 2 ^ D ) ) ) = ( [,] ` <. ( B / ( 2 ^ D ) ) , ( ( B + 1 ) / ( 2 ^ D ) ) >. ) |
|
| 9 | 7 8 | eqtr4di | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( [,] ` ( B F D ) ) = ( ( B / ( 2 ^ D ) ) [,] ( ( B + 1 ) / ( 2 ^ D ) ) ) ) |
| 10 | 3 | zred | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> B e. RR ) |
| 11 | 2nn | |- 2 e. NN |
|
| 12 | nnexpcl | |- ( ( 2 e. NN /\ D e. NN0 ) -> ( 2 ^ D ) e. NN ) |
|
| 13 | 11 4 12 | sylancr | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( 2 ^ D ) e. NN ) |
| 14 | 10 13 | nndivred | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( B / ( 2 ^ D ) ) e. RR ) |
| 15 | peano2re | |- ( B e. RR -> ( B + 1 ) e. RR ) |
|
| 16 | 10 15 | syl | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( B + 1 ) e. RR ) |
| 17 | 16 13 | nndivred | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( ( B + 1 ) / ( 2 ^ D ) ) e. RR ) |
| 18 | iccssre | |- ( ( ( B / ( 2 ^ D ) ) e. RR /\ ( ( B + 1 ) / ( 2 ^ D ) ) e. RR ) -> ( ( B / ( 2 ^ D ) ) [,] ( ( B + 1 ) / ( 2 ^ D ) ) ) C_ RR ) |
|
| 19 | 14 17 18 | syl2anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( ( B / ( 2 ^ D ) ) [,] ( ( B + 1 ) / ( 2 ^ D ) ) ) C_ RR ) |
| 20 | 9 19 | eqsstrd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( [,] ` ( B F D ) ) C_ RR ) |
| 21 | ovolss | |- ( ( ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) /\ ( [,] ` ( B F D ) ) C_ RR ) -> ( vol* ` ( [,] ` ( A F C ) ) ) <_ ( vol* ` ( [,] ` ( B F D ) ) ) ) |
|
| 22 | 2 20 21 | syl2anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( vol* ` ( [,] ` ( A F C ) ) ) <_ ( vol* ` ( [,] ` ( B F D ) ) ) ) |
| 23 | simplll | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> A e. ZZ ) |
|
| 24 | simplrl | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> C e. NN0 ) |
|
| 25 | 1 | dyadovol | |- ( ( A e. ZZ /\ C e. NN0 ) -> ( vol* ` ( [,] ` ( A F C ) ) ) = ( 1 / ( 2 ^ C ) ) ) |
| 26 | 23 24 25 | syl2anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( vol* ` ( [,] ` ( A F C ) ) ) = ( 1 / ( 2 ^ C ) ) ) |
| 27 | 1 | dyadovol | |- ( ( B e. ZZ /\ D e. NN0 ) -> ( vol* ` ( [,] ` ( B F D ) ) ) = ( 1 / ( 2 ^ D ) ) ) |
| 28 | 3 4 27 | syl2anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( vol* ` ( [,] ` ( B F D ) ) ) = ( 1 / ( 2 ^ D ) ) ) |
| 29 | 22 26 28 | 3brtr3d | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( 1 / ( 2 ^ C ) ) <_ ( 1 / ( 2 ^ D ) ) ) |
| 30 | nnexpcl | |- ( ( 2 e. NN /\ C e. NN0 ) -> ( 2 ^ C ) e. NN ) |
|
| 31 | 11 24 30 | sylancr | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( 2 ^ C ) e. NN ) |
| 32 | nnre | |- ( ( 2 ^ D ) e. NN -> ( 2 ^ D ) e. RR ) |
|
| 33 | nngt0 | |- ( ( 2 ^ D ) e. NN -> 0 < ( 2 ^ D ) ) |
|
| 34 | 32 33 | jca | |- ( ( 2 ^ D ) e. NN -> ( ( 2 ^ D ) e. RR /\ 0 < ( 2 ^ D ) ) ) |
| 35 | nnre | |- ( ( 2 ^ C ) e. NN -> ( 2 ^ C ) e. RR ) |
|
| 36 | nngt0 | |- ( ( 2 ^ C ) e. NN -> 0 < ( 2 ^ C ) ) |
|
| 37 | 35 36 | jca | |- ( ( 2 ^ C ) e. NN -> ( ( 2 ^ C ) e. RR /\ 0 < ( 2 ^ C ) ) ) |
| 38 | lerec | |- ( ( ( ( 2 ^ D ) e. RR /\ 0 < ( 2 ^ D ) ) /\ ( ( 2 ^ C ) e. RR /\ 0 < ( 2 ^ C ) ) ) -> ( ( 2 ^ D ) <_ ( 2 ^ C ) <-> ( 1 / ( 2 ^ C ) ) <_ ( 1 / ( 2 ^ D ) ) ) ) |
|
| 39 | 34 37 38 | syl2an | |- ( ( ( 2 ^ D ) e. NN /\ ( 2 ^ C ) e. NN ) -> ( ( 2 ^ D ) <_ ( 2 ^ C ) <-> ( 1 / ( 2 ^ C ) ) <_ ( 1 / ( 2 ^ D ) ) ) ) |
| 40 | 13 31 39 | syl2anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( ( 2 ^ D ) <_ ( 2 ^ C ) <-> ( 1 / ( 2 ^ C ) ) <_ ( 1 / ( 2 ^ D ) ) ) ) |
| 41 | 29 40 | mpbird | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( 2 ^ D ) <_ ( 2 ^ C ) ) |
| 42 | 2re | |- 2 e. RR |
|
| 43 | 42 | a1i | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> 2 e. RR ) |
| 44 | 4 | nn0zd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> D e. ZZ ) |
| 45 | 24 | nn0zd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> C e. ZZ ) |
| 46 | 1lt2 | |- 1 < 2 |
|
| 47 | 46 | a1i | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> 1 < 2 ) |
| 48 | 43 44 45 47 | leexp2d | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> ( D <_ C <-> ( 2 ^ D ) <_ ( 2 ^ C ) ) ) |
| 49 | 41 48 | mpbird | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) /\ ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) -> D <_ C ) |
| 50 | 49 | ex | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) -> ( ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) -> D <_ C ) ) |