This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Volume of a dyadic rational interval. (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| Assertion | dyadovol | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( vol* ‘ ( [,] ‘ ( 𝐴 𝐹 𝐵 ) ) ) = ( 1 / ( 2 ↑ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| 2 | 1 | dyadval | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 𝐹 𝐵 ) = 〈 ( 𝐴 / ( 2 ↑ 𝐵 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) 〉 ) |
| 3 | 2 | fveq2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( [,] ‘ ( 𝐴 𝐹 𝐵 ) ) = ( [,] ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐵 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) 〉 ) ) |
| 4 | df-ov | ⊢ ( ( 𝐴 / ( 2 ↑ 𝐵 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) = ( [,] ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐵 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) 〉 ) | |
| 5 | 3 4 | eqtr4di | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( [,] ‘ ( 𝐴 𝐹 𝐵 ) ) = ( ( 𝐴 / ( 2 ↑ 𝐵 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) ) |
| 6 | 5 | fveq2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( vol* ‘ ( [,] ‘ ( 𝐴 𝐹 𝐵 ) ) ) = ( vol* ‘ ( ( 𝐴 / ( 2 ↑ 𝐵 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) ) ) |
| 7 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 8 | 2nn | ⊢ 2 ∈ ℕ | |
| 9 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝐵 ∈ ℕ0 ) → ( 2 ↑ 𝐵 ) ∈ ℕ ) | |
| 10 | 8 9 | mpan | ⊢ ( 𝐵 ∈ ℕ0 → ( 2 ↑ 𝐵 ) ∈ ℕ ) |
| 11 | nndivre | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 2 ↑ 𝐵 ) ∈ ℕ ) → ( 𝐴 / ( 2 ↑ 𝐵 ) ) ∈ ℝ ) | |
| 12 | 7 10 11 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 / ( 2 ↑ 𝐵 ) ) ∈ ℝ ) |
| 13 | peano2re | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) | |
| 14 | 7 13 | syl | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 + 1 ) ∈ ℝ ) |
| 15 | nndivre | ⊢ ( ( ( 𝐴 + 1 ) ∈ ℝ ∧ ( 2 ↑ 𝐵 ) ∈ ℕ ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ∈ ℝ ) | |
| 16 | 14 10 15 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ∈ ℝ ) |
| 17 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
| 18 | 17 | lep1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → 𝐴 ≤ ( 𝐴 + 1 ) ) |
| 19 | 17 13 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 + 1 ) ∈ ℝ ) |
| 20 | 10 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 2 ↑ 𝐵 ) ∈ ℕ ) |
| 21 | 20 | nnred | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 2 ↑ 𝐵 ) ∈ ℝ ) |
| 22 | 20 | nngt0d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → 0 < ( 2 ↑ 𝐵 ) ) |
| 23 | lediv1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ∧ ( ( 2 ↑ 𝐵 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐵 ) ) ) → ( 𝐴 ≤ ( 𝐴 + 1 ) ↔ ( 𝐴 / ( 2 ↑ 𝐵 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) ) | |
| 24 | 17 19 21 22 23 | syl112anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ≤ ( 𝐴 + 1 ) ↔ ( 𝐴 / ( 2 ↑ 𝐵 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) ) |
| 25 | 18 24 | mpbid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 / ( 2 ↑ 𝐵 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) |
| 26 | ovolicc | ⊢ ( ( ( 𝐴 / ( 2 ↑ 𝐵 ) ) ∈ ℝ ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ∈ ℝ ∧ ( 𝐴 / ( 2 ↑ 𝐵 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) → ( vol* ‘ ( ( 𝐴 / ( 2 ↑ 𝐵 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) ) = ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) − ( 𝐴 / ( 2 ↑ 𝐵 ) ) ) ) | |
| 27 | 12 16 25 26 | syl3anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( vol* ‘ ( ( 𝐴 / ( 2 ↑ 𝐵 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) ) = ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) − ( 𝐴 / ( 2 ↑ 𝐵 ) ) ) ) |
| 28 | 19 | recnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 + 1 ) ∈ ℂ ) |
| 29 | 17 | recnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 30 | 21 | recnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 2 ↑ 𝐵 ) ∈ ℂ ) |
| 31 | 20 | nnne0d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 2 ↑ 𝐵 ) ≠ 0 ) |
| 32 | 28 29 30 31 | divsubdird | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 + 1 ) − 𝐴 ) / ( 2 ↑ 𝐵 ) ) = ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) − ( 𝐴 / ( 2 ↑ 𝐵 ) ) ) ) |
| 33 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 34 | pncan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + 1 ) − 𝐴 ) = 1 ) | |
| 35 | 29 33 34 | sylancl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 + 1 ) − 𝐴 ) = 1 ) |
| 36 | 35 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 + 1 ) − 𝐴 ) / ( 2 ↑ 𝐵 ) ) = ( 1 / ( 2 ↑ 𝐵 ) ) ) |
| 37 | 32 36 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) − ( 𝐴 / ( 2 ↑ 𝐵 ) ) ) = ( 1 / ( 2 ↑ 𝐵 ) ) ) |
| 38 | 6 27 37 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( vol* ‘ ( [,] ‘ ( 𝐴 𝐹 𝐵 ) ) ) = ( 1 / ( 2 ↑ 𝐵 ) ) ) |