This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the derivative operator. This acts on functions to produce a function that is defined where the original function is differentiable, with value the derivative of the function at these points. The set s here is the ambient topological space under which we are evaluating the continuity of the difference quotient. Although the definition is valid for any subset of CC and is well-behaved when s contains no isolated points, we will restrict our attention to the cases s = RR or s = CC for the majority of the development, these corresponding respectively to real and complex differentiation. (Contributed by Mario Carneiro, 7-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dv | |- _D = ( s e. ~P CC , f e. ( CC ^pm s ) |-> U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdv | |- _D |
|
| 1 | vs | |- s |
|
| 2 | cc | |- CC |
|
| 3 | 2 | cpw | |- ~P CC |
| 4 | vf | |- f |
|
| 5 | cpm | |- ^pm |
|
| 6 | 1 | cv | |- s |
| 7 | 2 6 5 | co | |- ( CC ^pm s ) |
| 8 | vx | |- x |
|
| 9 | cnt | |- int |
|
| 10 | ctopn | |- TopOpen |
|
| 11 | ccnfld | |- CCfld |
|
| 12 | 11 10 | cfv | |- ( TopOpen ` CCfld ) |
| 13 | crest | |- |`t |
|
| 14 | 12 6 13 | co | |- ( ( TopOpen ` CCfld ) |`t s ) |
| 15 | 14 9 | cfv | |- ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) |
| 16 | 4 | cv | |- f |
| 17 | 16 | cdm | |- dom f |
| 18 | 17 15 | cfv | |- ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) |
| 19 | 8 | cv | |- x |
| 20 | 19 | csn | |- { x } |
| 21 | vz | |- z |
|
| 22 | 17 20 | cdif | |- ( dom f \ { x } ) |
| 23 | 21 | cv | |- z |
| 24 | 23 16 | cfv | |- ( f ` z ) |
| 25 | cmin | |- - |
|
| 26 | 19 16 | cfv | |- ( f ` x ) |
| 27 | 24 26 25 | co | |- ( ( f ` z ) - ( f ` x ) ) |
| 28 | cdiv | |- / |
|
| 29 | 23 19 25 | co | |- ( z - x ) |
| 30 | 27 29 28 | co | |- ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) |
| 31 | 21 22 30 | cmpt | |- ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) |
| 32 | climc | |- limCC |
|
| 33 | 31 19 32 | co | |- ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) |
| 34 | 20 33 | cxp | |- ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) |
| 35 | 8 18 34 | ciun | |- U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) |
| 36 | 1 4 3 7 35 | cmpo | |- ( s e. ~P CC , f e. ( CC ^pm s ) |-> U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |
| 37 | 0 36 | wceq | |- _D = ( s e. ~P CC , f e. ( CC ^pm s ) |-> U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |