This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality in terms of ratio equal to ring unity. ( diveq1 analog.) (Contributed by Mario Carneiro, 28-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvreq1.b | |- B = ( Base ` R ) |
|
| dvreq1.o | |- U = ( Unit ` R ) |
||
| dvreq1.d | |- ./ = ( /r ` R ) |
||
| dvreq1.t | |- .1. = ( 1r ` R ) |
||
| Assertion | dvreq1 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X ./ Y ) = .1. <-> X = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvreq1.b | |- B = ( Base ` R ) |
|
| 2 | dvreq1.o | |- U = ( Unit ` R ) |
|
| 3 | dvreq1.d | |- ./ = ( /r ` R ) |
|
| 4 | dvreq1.t | |- .1. = ( 1r ` R ) |
|
| 5 | oveq1 | |- ( ( X ./ Y ) = .1. -> ( ( X ./ Y ) ( .r ` R ) Y ) = ( .1. ( .r ` R ) Y ) ) |
|
| 6 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 7 | 1 2 3 6 | dvrcan1 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X ./ Y ) ( .r ` R ) Y ) = X ) |
| 8 | 1 2 | unitcl | |- ( Y e. U -> Y e. B ) |
| 9 | 1 6 4 | ringlidm | |- ( ( R e. Ring /\ Y e. B ) -> ( .1. ( .r ` R ) Y ) = Y ) |
| 10 | 8 9 | sylan2 | |- ( ( R e. Ring /\ Y e. U ) -> ( .1. ( .r ` R ) Y ) = Y ) |
| 11 | 10 | 3adant2 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( .1. ( .r ` R ) Y ) = Y ) |
| 12 | 7 11 | eqeq12d | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( ( X ./ Y ) ( .r ` R ) Y ) = ( .1. ( .r ` R ) Y ) <-> X = Y ) ) |
| 13 | 5 12 | imbitrid | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X ./ Y ) = .1. -> X = Y ) ) |
| 14 | 2 3 4 | dvrid | |- ( ( R e. Ring /\ Y e. U ) -> ( Y ./ Y ) = .1. ) |
| 15 | 14 | 3adant2 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( Y ./ Y ) = .1. ) |
| 16 | oveq1 | |- ( X = Y -> ( X ./ Y ) = ( Y ./ Y ) ) |
|
| 17 | 16 | eqeq1d | |- ( X = Y -> ( ( X ./ Y ) = .1. <-> ( Y ./ Y ) = .1. ) ) |
| 18 | 15 17 | syl5ibrcom | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X = Y -> ( X ./ Y ) = .1. ) ) |
| 19 | 13 18 | impbid | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X ./ Y ) = .1. <-> X = Y ) ) |