This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring element divided by itself is the ring unity. ( divid analog.) (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitdvcl.o | |- U = ( Unit ` R ) |
|
| unitdvcl.d | |- ./ = ( /r ` R ) |
||
| dvrid.o | |- .1. = ( 1r ` R ) |
||
| Assertion | dvrid | |- ( ( R e. Ring /\ X e. U ) -> ( X ./ X ) = .1. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitdvcl.o | |- U = ( Unit ` R ) |
|
| 2 | unitdvcl.d | |- ./ = ( /r ` R ) |
|
| 3 | dvrid.o | |- .1. = ( 1r ` R ) |
|
| 4 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 5 | 4 1 | unitcl | |- ( X e. U -> X e. ( Base ` R ) ) |
| 6 | 5 | adantl | |- ( ( R e. Ring /\ X e. U ) -> X e. ( Base ` R ) ) |
| 7 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 8 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 9 | 4 7 1 8 2 | dvrval | |- ( ( X e. ( Base ` R ) /\ X e. U ) -> ( X ./ X ) = ( X ( .r ` R ) ( ( invr ` R ) ` X ) ) ) |
| 10 | 6 9 | sylancom | |- ( ( R e. Ring /\ X e. U ) -> ( X ./ X ) = ( X ( .r ` R ) ( ( invr ` R ) ` X ) ) ) |
| 11 | 1 8 7 3 | unitrinv | |- ( ( R e. Ring /\ X e. U ) -> ( X ( .r ` R ) ( ( invr ` R ) ` X ) ) = .1. ) |
| 12 | 10 11 | eqtrd | |- ( ( R e. Ring /\ X e. U ) -> ( X ./ X ) = .1. ) |