This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality in terms of ratio equal to ring unity. ( diveq1 analog.) (Contributed by Mario Carneiro, 28-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvreq1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvreq1.o | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| dvreq1.d | ⊢ / = ( /r ‘ 𝑅 ) | ||
| dvreq1.t | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | dvreq1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 / 𝑌 ) = 1 ↔ 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvreq1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvreq1.o | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | dvreq1.d | ⊢ / = ( /r ‘ 𝑅 ) | |
| 4 | dvreq1.t | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | oveq1 | ⊢ ( ( 𝑋 / 𝑌 ) = 1 → ( ( 𝑋 / 𝑌 ) ( .r ‘ 𝑅 ) 𝑌 ) = ( 1 ( .r ‘ 𝑅 ) 𝑌 ) ) | |
| 6 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 7 | 1 2 3 6 | dvrcan1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 / 𝑌 ) ( .r ‘ 𝑅 ) 𝑌 ) = 𝑋 ) |
| 8 | 1 2 | unitcl | ⊢ ( 𝑌 ∈ 𝑈 → 𝑌 ∈ 𝐵 ) |
| 9 | 1 6 4 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( 1 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑌 ) |
| 10 | 8 9 | sylan2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ) → ( 1 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑌 ) |
| 11 | 10 | 3adant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 1 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑌 ) |
| 12 | 7 11 | eqeq12d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( ( 𝑋 / 𝑌 ) ( .r ‘ 𝑅 ) 𝑌 ) = ( 1 ( .r ‘ 𝑅 ) 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |
| 13 | 5 12 | imbitrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 / 𝑌 ) = 1 → 𝑋 = 𝑌 ) ) |
| 14 | 2 3 4 | dvrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ) → ( 𝑌 / 𝑌 ) = 1 ) |
| 15 | 14 | 3adant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑌 / 𝑌 ) = 1 ) |
| 16 | oveq1 | ⊢ ( 𝑋 = 𝑌 → ( 𝑋 / 𝑌 ) = ( 𝑌 / 𝑌 ) ) | |
| 17 | 16 | eqeq1d | ⊢ ( 𝑋 = 𝑌 → ( ( 𝑋 / 𝑌 ) = 1 ↔ ( 𝑌 / 𝑌 ) = 1 ) ) |
| 18 | 15 17 | syl5ibrcom | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 = 𝑌 → ( 𝑋 / 𝑌 ) = 1 ) ) |
| 19 | 13 18 | impbid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 / 𝑌 ) = 1 ↔ 𝑋 = 𝑌 ) ) |