This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrdir.b | |- B = ( Base ` R ) |
|
| dvrdir.u | |- U = ( Unit ` R ) |
||
| dvrdir.p | |- .+ = ( +g ` R ) |
||
| dvrdir.t | |- ./ = ( /r ` R ) |
||
| Assertion | dvrdir | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( ( X .+ Y ) ./ Z ) = ( ( X ./ Z ) .+ ( Y ./ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrdir.b | |- B = ( Base ` R ) |
|
| 2 | dvrdir.u | |- U = ( Unit ` R ) |
|
| 3 | dvrdir.p | |- .+ = ( +g ` R ) |
|
| 4 | dvrdir.t | |- ./ = ( /r ` R ) |
|
| 5 | simpl | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> R e. Ring ) |
|
| 6 | simpr1 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> X e. B ) |
|
| 7 | simpr2 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> Y e. B ) |
|
| 8 | 1 2 | unitss | |- U C_ B |
| 9 | simpr3 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> Z e. U ) |
|
| 10 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 11 | 2 10 | unitinvcl | |- ( ( R e. Ring /\ Z e. U ) -> ( ( invr ` R ) ` Z ) e. U ) |
| 12 | 9 11 | syldan | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( ( invr ` R ) ` Z ) e. U ) |
| 13 | 8 12 | sselid | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( ( invr ` R ) ` Z ) e. B ) |
| 14 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 15 | 1 3 14 | ringdir | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ ( ( invr ` R ) ` Z ) e. B ) ) -> ( ( X .+ Y ) ( .r ` R ) ( ( invr ` R ) ` Z ) ) = ( ( X ( .r ` R ) ( ( invr ` R ) ` Z ) ) .+ ( Y ( .r ` R ) ( ( invr ` R ) ` Z ) ) ) ) |
| 16 | 5 6 7 13 15 | syl13anc | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( ( X .+ Y ) ( .r ` R ) ( ( invr ` R ) ` Z ) ) = ( ( X ( .r ` R ) ( ( invr ` R ) ` Z ) ) .+ ( Y ( .r ` R ) ( ( invr ` R ) ` Z ) ) ) ) |
| 17 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 18 | 17 | adantr | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> R e. Grp ) |
| 19 | 1 3 | grpcl | |- ( ( R e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |
| 20 | 18 6 7 19 | syl3anc | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( X .+ Y ) e. B ) |
| 21 | 1 14 2 10 4 | dvrval | |- ( ( ( X .+ Y ) e. B /\ Z e. U ) -> ( ( X .+ Y ) ./ Z ) = ( ( X .+ Y ) ( .r ` R ) ( ( invr ` R ) ` Z ) ) ) |
| 22 | 20 9 21 | syl2anc | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( ( X .+ Y ) ./ Z ) = ( ( X .+ Y ) ( .r ` R ) ( ( invr ` R ) ` Z ) ) ) |
| 23 | 1 14 2 10 4 | dvrval | |- ( ( X e. B /\ Z e. U ) -> ( X ./ Z ) = ( X ( .r ` R ) ( ( invr ` R ) ` Z ) ) ) |
| 24 | 6 9 23 | syl2anc | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( X ./ Z ) = ( X ( .r ` R ) ( ( invr ` R ) ` Z ) ) ) |
| 25 | 1 14 2 10 4 | dvrval | |- ( ( Y e. B /\ Z e. U ) -> ( Y ./ Z ) = ( Y ( .r ` R ) ( ( invr ` R ) ` Z ) ) ) |
| 26 | 7 9 25 | syl2anc | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( Y ./ Z ) = ( Y ( .r ` R ) ( ( invr ` R ) ` Z ) ) ) |
| 27 | 24 26 | oveq12d | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( ( X ./ Z ) .+ ( Y ./ Z ) ) = ( ( X ( .r ` R ) ( ( invr ` R ) ` Z ) ) .+ ( Y ( .r ` R ) ( ( invr ` R ) ` Z ) ) ) ) |
| 28 | 16 22 27 | 3eqtr4d | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( ( X .+ Y ) ./ Z ) = ( ( X ./ Z ) .+ ( Y ./ Z ) ) ) |