This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition for the derivative of a product to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmulcncf.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvmulcncf.f | |- ( ph -> F : X --> CC ) |
||
| dvmulcncf.g | |- ( ph -> G : X --> CC ) |
||
| dvmulcncf.fdv | |- ( ph -> ( S _D F ) e. ( X -cn-> CC ) ) |
||
| dvmulcncf.gdv | |- ( ph -> ( S _D G ) e. ( X -cn-> CC ) ) |
||
| Assertion | dvmulcncf | |- ( ph -> ( S _D ( F oF x. G ) ) e. ( X -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmulcncf.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvmulcncf.f | |- ( ph -> F : X --> CC ) |
|
| 3 | dvmulcncf.g | |- ( ph -> G : X --> CC ) |
|
| 4 | dvmulcncf.fdv | |- ( ph -> ( S _D F ) e. ( X -cn-> CC ) ) |
|
| 5 | dvmulcncf.gdv | |- ( ph -> ( S _D G ) e. ( X -cn-> CC ) ) |
|
| 6 | cncff | |- ( ( S _D F ) e. ( X -cn-> CC ) -> ( S _D F ) : X --> CC ) |
|
| 7 | fdm | |- ( ( S _D F ) : X --> CC -> dom ( S _D F ) = X ) |
|
| 8 | 4 6 7 | 3syl | |- ( ph -> dom ( S _D F ) = X ) |
| 9 | cncff | |- ( ( S _D G ) e. ( X -cn-> CC ) -> ( S _D G ) : X --> CC ) |
|
| 10 | fdm | |- ( ( S _D G ) : X --> CC -> dom ( S _D G ) = X ) |
|
| 11 | 5 9 10 | 3syl | |- ( ph -> dom ( S _D G ) = X ) |
| 12 | 1 2 3 8 11 | dvmulf | |- ( ph -> ( S _D ( F oF x. G ) ) = ( ( ( S _D F ) oF x. G ) oF + ( ( S _D G ) oF x. F ) ) ) |
| 13 | ax-resscn | |- RR C_ CC |
|
| 14 | sseq1 | |- ( S = RR -> ( S C_ CC <-> RR C_ CC ) ) |
|
| 15 | 13 14 | mpbiri | |- ( S = RR -> S C_ CC ) |
| 16 | eqimss | |- ( S = CC -> S C_ CC ) |
|
| 17 | 15 16 | pm3.2i | |- ( ( S = RR -> S C_ CC ) /\ ( S = CC -> S C_ CC ) ) |
| 18 | elpri | |- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
|
| 19 | 1 18 | syl | |- ( ph -> ( S = RR \/ S = CC ) ) |
| 20 | pm3.44 | |- ( ( ( S = RR -> S C_ CC ) /\ ( S = CC -> S C_ CC ) ) -> ( ( S = RR \/ S = CC ) -> S C_ CC ) ) |
|
| 21 | 17 19 20 | mpsyl | |- ( ph -> S C_ CC ) |
| 22 | dvbsss | |- dom ( S _D F ) C_ S |
|
| 23 | 8 22 | eqsstrrdi | |- ( ph -> X C_ S ) |
| 24 | dvcn | |- ( ( ( S C_ CC /\ G : X --> CC /\ X C_ S ) /\ dom ( S _D G ) = X ) -> G e. ( X -cn-> CC ) ) |
|
| 25 | 21 3 23 11 24 | syl31anc | |- ( ph -> G e. ( X -cn-> CC ) ) |
| 26 | 4 25 | mulcncff | |- ( ph -> ( ( S _D F ) oF x. G ) e. ( X -cn-> CC ) ) |
| 27 | dvcn | |- ( ( ( S C_ CC /\ F : X --> CC /\ X C_ S ) /\ dom ( S _D F ) = X ) -> F e. ( X -cn-> CC ) ) |
|
| 28 | 21 2 23 8 27 | syl31anc | |- ( ph -> F e. ( X -cn-> CC ) ) |
| 29 | 5 28 | mulcncff | |- ( ph -> ( ( S _D G ) oF x. F ) e. ( X -cn-> CC ) ) |
| 30 | 26 29 | addcncff | |- ( ph -> ( ( ( S _D F ) oF x. G ) oF + ( ( S _D G ) oF x. F ) ) e. ( X -cn-> CC ) ) |
| 31 | 12 30 | eqeltrd | |- ( ph -> ( S _D ( F oF x. G ) ) e. ( X -cn-> CC ) ) |