This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition for the derivative of a product to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmulcncf.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvmulcncf.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | ||
| dvmulcncf.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | ||
| dvmulcncf.fdv | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) ∈ ( 𝑋 –cn→ ℂ ) ) | ||
| dvmulcncf.gdv | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) ) | ||
| Assertion | dvmulcncf | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmulcncf.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvmulcncf.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 3 | dvmulcncf.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | |
| 4 | dvmulcncf.fdv | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 5 | dvmulcncf.gdv | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 6 | cncff | ⊢ ( ( 𝑆 D 𝐹 ) ∈ ( 𝑋 –cn→ ℂ ) → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) | |
| 7 | fdm | ⊢ ( ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | |
| 8 | 4 6 7 | 3syl | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
| 9 | cncff | ⊢ ( ( 𝑆 D 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) → ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) | |
| 10 | fdm | ⊢ ( ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ → dom ( 𝑆 D 𝐺 ) = 𝑋 ) | |
| 11 | 5 9 10 | 3syl | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 ) |
| 12 | 1 2 3 8 11 | dvmulf | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) = ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f + ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) ) |
| 13 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 14 | sseq1 | ⊢ ( 𝑆 = ℝ → ( 𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ ) ) | |
| 15 | 13 14 | mpbiri | ⊢ ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) |
| 16 | eqimss | ⊢ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) | |
| 17 | 15 16 | pm3.2i | ⊢ ( ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) ∧ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) ) |
| 18 | elpri | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) | |
| 19 | 1 18 | syl | ⊢ ( 𝜑 → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) |
| 20 | pm3.44 | ⊢ ( ( ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) ∧ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) ) → ( ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) → 𝑆 ⊆ ℂ ) ) | |
| 21 | 17 19 20 | mpsyl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 22 | dvbsss | ⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 | |
| 23 | 8 22 | eqsstrrdi | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 24 | dvcn | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐺 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ 𝑆 ) ∧ dom ( 𝑆 D 𝐺 ) = 𝑋 ) → 𝐺 ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 25 | 21 3 23 11 24 | syl31anc | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 –cn→ ℂ ) ) |
| 26 | 4 25 | mulcncff | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 27 | dvcn | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ 𝑆 ) ∧ dom ( 𝑆 D 𝐹 ) = 𝑋 ) → 𝐹 ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 28 | 21 2 23 8 27 | syl31anc | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 –cn→ ℂ ) ) |
| 29 | 5 28 | mulcncff | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 30 | 26 29 | addcncff | ⊢ ( 𝜑 → ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f + ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 31 | 12 30 | eqeltrd | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f · 𝐺 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |