This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvferm . (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvferm.a | |- ( ph -> F : X --> RR ) |
|
| dvferm.b | |- ( ph -> X C_ RR ) |
||
| dvferm.u | |- ( ph -> U e. ( A (,) B ) ) |
||
| dvferm.s | |- ( ph -> ( A (,) B ) C_ X ) |
||
| dvferm.d | |- ( ph -> U e. dom ( RR _D F ) ) |
||
| dvferm1.r | |- ( ph -> A. y e. ( U (,) B ) ( F ` y ) <_ ( F ` U ) ) |
||
| dvferm1.z | |- ( ph -> 0 < ( ( RR _D F ) ` U ) ) |
||
| dvferm1.t | |- ( ph -> T e. RR+ ) |
||
| dvferm1.l | |- ( ph -> A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < T ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) |
||
| dvferm1.x | |- S = ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) |
||
| Assertion | dvferm1lem | |- -. ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvferm.a | |- ( ph -> F : X --> RR ) |
|
| 2 | dvferm.b | |- ( ph -> X C_ RR ) |
|
| 3 | dvferm.u | |- ( ph -> U e. ( A (,) B ) ) |
|
| 4 | dvferm.s | |- ( ph -> ( A (,) B ) C_ X ) |
|
| 5 | dvferm.d | |- ( ph -> U e. dom ( RR _D F ) ) |
|
| 6 | dvferm1.r | |- ( ph -> A. y e. ( U (,) B ) ( F ` y ) <_ ( F ` U ) ) |
|
| 7 | dvferm1.z | |- ( ph -> 0 < ( ( RR _D F ) ` U ) ) |
|
| 8 | dvferm1.t | |- ( ph -> T e. RR+ ) |
|
| 9 | dvferm1.l | |- ( ph -> A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < T ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) |
|
| 10 | dvferm1.x | |- S = ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) |
|
| 11 | dvfre | |- ( ( F : X --> RR /\ X C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
|
| 12 | 1 2 11 | syl2anc | |- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 13 | 12 5 | ffvelcdmd | |- ( ph -> ( ( RR _D F ) ` U ) e. RR ) |
| 14 | 13 | recnd | |- ( ph -> ( ( RR _D F ) ` U ) e. CC ) |
| 15 | 14 | subidd | |- ( ph -> ( ( ( RR _D F ) ` U ) - ( ( RR _D F ) ` U ) ) = 0 ) |
| 16 | ioossre | |- ( A (,) B ) C_ RR |
|
| 17 | 16 3 | sselid | |- ( ph -> U e. RR ) |
| 18 | eliooord | |- ( U e. ( A (,) B ) -> ( A < U /\ U < B ) ) |
|
| 19 | 3 18 | syl | |- ( ph -> ( A < U /\ U < B ) ) |
| 20 | 19 | simprd | |- ( ph -> U < B ) |
| 21 | 17 8 | ltaddrpd | |- ( ph -> U < ( U + T ) ) |
| 22 | breq2 | |- ( B = if ( B <_ ( U + T ) , B , ( U + T ) ) -> ( U < B <-> U < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
|
| 23 | breq2 | |- ( ( U + T ) = if ( B <_ ( U + T ) , B , ( U + T ) ) -> ( U < ( U + T ) <-> U < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
|
| 24 | 22 23 | ifboth | |- ( ( U < B /\ U < ( U + T ) ) -> U < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
| 25 | 20 21 24 | syl2anc | |- ( ph -> U < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
| 26 | ne0i | |- ( U e. ( A (,) B ) -> ( A (,) B ) =/= (/) ) |
|
| 27 | ndmioo | |- ( -. ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = (/) ) |
|
| 28 | 27 | necon1ai | |- ( ( A (,) B ) =/= (/) -> ( A e. RR* /\ B e. RR* ) ) |
| 29 | 3 26 28 | 3syl | |- ( ph -> ( A e. RR* /\ B e. RR* ) ) |
| 30 | 29 | simprd | |- ( ph -> B e. RR* ) |
| 31 | 8 | rpred | |- ( ph -> T e. RR ) |
| 32 | 17 31 | readdcld | |- ( ph -> ( U + T ) e. RR ) |
| 33 | 32 | rexrd | |- ( ph -> ( U + T ) e. RR* ) |
| 34 | 30 33 | ifcld | |- ( ph -> if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR* ) |
| 35 | mnfxr | |- -oo e. RR* |
|
| 36 | 35 | a1i | |- ( ph -> -oo e. RR* ) |
| 37 | 17 | rexrd | |- ( ph -> U e. RR* ) |
| 38 | 17 | mnfltd | |- ( ph -> -oo < U ) |
| 39 | 36 37 30 38 20 | xrlttrd | |- ( ph -> -oo < B ) |
| 40 | 32 | mnfltd | |- ( ph -> -oo < ( U + T ) ) |
| 41 | breq2 | |- ( B = if ( B <_ ( U + T ) , B , ( U + T ) ) -> ( -oo < B <-> -oo < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
|
| 42 | breq2 | |- ( ( U + T ) = if ( B <_ ( U + T ) , B , ( U + T ) ) -> ( -oo < ( U + T ) <-> -oo < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
|
| 43 | 41 42 | ifboth | |- ( ( -oo < B /\ -oo < ( U + T ) ) -> -oo < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
| 44 | 39 40 43 | syl2anc | |- ( ph -> -oo < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
| 45 | xrmin2 | |- ( ( B e. RR* /\ ( U + T ) e. RR* ) -> if ( B <_ ( U + T ) , B , ( U + T ) ) <_ ( U + T ) ) |
|
| 46 | 30 33 45 | syl2anc | |- ( ph -> if ( B <_ ( U + T ) , B , ( U + T ) ) <_ ( U + T ) ) |
| 47 | xrre | |- ( ( ( if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR* /\ ( U + T ) e. RR ) /\ ( -oo < if ( B <_ ( U + T ) , B , ( U + T ) ) /\ if ( B <_ ( U + T ) , B , ( U + T ) ) <_ ( U + T ) ) ) -> if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR ) |
|
| 48 | 34 32 44 46 47 | syl22anc | |- ( ph -> if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR ) |
| 49 | avglt1 | |- ( ( U e. RR /\ if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR ) -> ( U < if ( B <_ ( U + T ) , B , ( U + T ) ) <-> U < ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) ) ) |
|
| 50 | 17 48 49 | syl2anc | |- ( ph -> ( U < if ( B <_ ( U + T ) , B , ( U + T ) ) <-> U < ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) ) ) |
| 51 | 25 50 | mpbid | |- ( ph -> U < ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) ) |
| 52 | 51 10 | breqtrrdi | |- ( ph -> U < S ) |
| 53 | 17 52 | gtned | |- ( ph -> S =/= U ) |
| 54 | 17 48 | readdcld | |- ( ph -> ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) e. RR ) |
| 55 | 54 | rehalfcld | |- ( ph -> ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) e. RR ) |
| 56 | 10 55 | eqeltrid | |- ( ph -> S e. RR ) |
| 57 | 17 56 52 | ltled | |- ( ph -> U <_ S ) |
| 58 | 17 56 57 | abssubge0d | |- ( ph -> ( abs ` ( S - U ) ) = ( S - U ) ) |
| 59 | avglt2 | |- ( ( U e. RR /\ if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR ) -> ( U < if ( B <_ ( U + T ) , B , ( U + T ) ) <-> ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
|
| 60 | 17 48 59 | syl2anc | |- ( ph -> ( U < if ( B <_ ( U + T ) , B , ( U + T ) ) <-> ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
| 61 | 25 60 | mpbid | |- ( ph -> ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
| 62 | 10 61 | eqbrtrid | |- ( ph -> S < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
| 63 | 56 48 32 62 46 | ltletrd | |- ( ph -> S < ( U + T ) ) |
| 64 | 56 17 31 | ltsubadd2d | |- ( ph -> ( ( S - U ) < T <-> S < ( U + T ) ) ) |
| 65 | 63 64 | mpbird | |- ( ph -> ( S - U ) < T ) |
| 66 | 58 65 | eqbrtrd | |- ( ph -> ( abs ` ( S - U ) ) < T ) |
| 67 | neeq1 | |- ( z = S -> ( z =/= U <-> S =/= U ) ) |
|
| 68 | fvoveq1 | |- ( z = S -> ( abs ` ( z - U ) ) = ( abs ` ( S - U ) ) ) |
|
| 69 | 68 | breq1d | |- ( z = S -> ( ( abs ` ( z - U ) ) < T <-> ( abs ` ( S - U ) ) < T ) ) |
| 70 | 67 69 | anbi12d | |- ( z = S -> ( ( z =/= U /\ ( abs ` ( z - U ) ) < T ) <-> ( S =/= U /\ ( abs ` ( S - U ) ) < T ) ) ) |
| 71 | fveq2 | |- ( z = S -> ( F ` z ) = ( F ` S ) ) |
|
| 72 | 71 | oveq1d | |- ( z = S -> ( ( F ` z ) - ( F ` U ) ) = ( ( F ` S ) - ( F ` U ) ) ) |
| 73 | oveq1 | |- ( z = S -> ( z - U ) = ( S - U ) ) |
|
| 74 | 72 73 | oveq12d | |- ( z = S -> ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) = ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) |
| 75 | 74 | fvoveq1d | |- ( z = S -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) = ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) ) |
| 76 | 75 | breq1d | |- ( z = S -> ( ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) <-> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) |
| 77 | 70 76 | imbi12d | |- ( z = S -> ( ( ( z =/= U /\ ( abs ` ( z - U ) ) < T ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) <-> ( ( S =/= U /\ ( abs ` ( S - U ) ) < T ) -> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) ) |
| 78 | 29 | simpld | |- ( ph -> A e. RR* ) |
| 79 | 19 | simpld | |- ( ph -> A < U ) |
| 80 | 78 37 79 | xrltled | |- ( ph -> A <_ U ) |
| 81 | iooss1 | |- ( ( A e. RR* /\ A <_ U ) -> ( U (,) B ) C_ ( A (,) B ) ) |
|
| 82 | 78 80 81 | syl2anc | |- ( ph -> ( U (,) B ) C_ ( A (,) B ) ) |
| 83 | 82 4 | sstrd | |- ( ph -> ( U (,) B ) C_ X ) |
| 84 | 56 | rexrd | |- ( ph -> S e. RR* ) |
| 85 | xrmin1 | |- ( ( B e. RR* /\ ( U + T ) e. RR* ) -> if ( B <_ ( U + T ) , B , ( U + T ) ) <_ B ) |
|
| 86 | 30 33 85 | syl2anc | |- ( ph -> if ( B <_ ( U + T ) , B , ( U + T ) ) <_ B ) |
| 87 | 84 34 30 62 86 | xrltletrd | |- ( ph -> S < B ) |
| 88 | elioo2 | |- ( ( U e. RR* /\ B e. RR* ) -> ( S e. ( U (,) B ) <-> ( S e. RR /\ U < S /\ S < B ) ) ) |
|
| 89 | 37 30 88 | syl2anc | |- ( ph -> ( S e. ( U (,) B ) <-> ( S e. RR /\ U < S /\ S < B ) ) ) |
| 90 | 56 52 87 89 | mpbir3and | |- ( ph -> S e. ( U (,) B ) ) |
| 91 | 83 90 | sseldd | |- ( ph -> S e. X ) |
| 92 | eldifsn | |- ( S e. ( X \ { U } ) <-> ( S e. X /\ S =/= U ) ) |
|
| 93 | 91 53 92 | sylanbrc | |- ( ph -> S e. ( X \ { U } ) ) |
| 94 | 77 9 93 | rspcdva | |- ( ph -> ( ( S =/= U /\ ( abs ` ( S - U ) ) < T ) -> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) |
| 95 | 53 66 94 | mp2and | |- ( ph -> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) |
| 96 | 1 91 | ffvelcdmd | |- ( ph -> ( F ` S ) e. RR ) |
| 97 | 4 3 | sseldd | |- ( ph -> U e. X ) |
| 98 | 1 97 | ffvelcdmd | |- ( ph -> ( F ` U ) e. RR ) |
| 99 | 96 98 | resubcld | |- ( ph -> ( ( F ` S ) - ( F ` U ) ) e. RR ) |
| 100 | 56 17 | resubcld | |- ( ph -> ( S - U ) e. RR ) |
| 101 | 17 56 | posdifd | |- ( ph -> ( U < S <-> 0 < ( S - U ) ) ) |
| 102 | 52 101 | mpbid | |- ( ph -> 0 < ( S - U ) ) |
| 103 | 100 102 | elrpd | |- ( ph -> ( S - U ) e. RR+ ) |
| 104 | 99 103 | rerpdivcld | |- ( ph -> ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) e. RR ) |
| 105 | 104 13 13 | absdifltd | |- ( ph -> ( ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) <-> ( ( ( ( RR _D F ) ` U ) - ( ( RR _D F ) ` U ) ) < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) /\ ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) < ( ( ( RR _D F ) ` U ) + ( ( RR _D F ) ` U ) ) ) ) ) |
| 106 | 95 105 | mpbid | |- ( ph -> ( ( ( ( RR _D F ) ` U ) - ( ( RR _D F ) ` U ) ) < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) /\ ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) < ( ( ( RR _D F ) ` U ) + ( ( RR _D F ) ` U ) ) ) ) |
| 107 | 106 | simpld | |- ( ph -> ( ( ( RR _D F ) ` U ) - ( ( RR _D F ) ` U ) ) < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) |
| 108 | 15 107 | eqbrtrrd | |- ( ph -> 0 < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) |
| 109 | gt0div | |- ( ( ( ( F ` S ) - ( F ` U ) ) e. RR /\ ( S - U ) e. RR /\ 0 < ( S - U ) ) -> ( 0 < ( ( F ` S ) - ( F ` U ) ) <-> 0 < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) ) |
|
| 110 | 99 100 102 109 | syl3anc | |- ( ph -> ( 0 < ( ( F ` S ) - ( F ` U ) ) <-> 0 < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) ) |
| 111 | 108 110 | mpbird | |- ( ph -> 0 < ( ( F ` S ) - ( F ` U ) ) ) |
| 112 | 98 96 | posdifd | |- ( ph -> ( ( F ` U ) < ( F ` S ) <-> 0 < ( ( F ` S ) - ( F ` U ) ) ) ) |
| 113 | 111 112 | mpbird | |- ( ph -> ( F ` U ) < ( F ` S ) ) |
| 114 | fveq2 | |- ( y = S -> ( F ` y ) = ( F ` S ) ) |
|
| 115 | 114 | breq1d | |- ( y = S -> ( ( F ` y ) <_ ( F ` U ) <-> ( F ` S ) <_ ( F ` U ) ) ) |
| 116 | 115 6 90 | rspcdva | |- ( ph -> ( F ` S ) <_ ( F ` U ) ) |
| 117 | 96 98 116 | lensymd | |- ( ph -> -. ( F ` U ) < ( F ` S ) ) |
| 118 | 113 117 | pm2.65i | |- -. ph |