This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the (right) divisibility relation in a ring. Access to the left divisibility relation is available through ( ||r( oppRR ) ) . (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dvdsr | |- ||r = ( w e. _V |-> { <. x , y >. | ( x e. ( Base ` w ) /\ E. z e. ( Base ` w ) ( z ( .r ` w ) x ) = y ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdsr | |- ||r |
|
| 1 | vw | |- w |
|
| 2 | cvv | |- _V |
|
| 3 | vx | |- x |
|
| 4 | vy | |- y |
|
| 5 | 3 | cv | |- x |
| 6 | cbs | |- Base |
|
| 7 | 1 | cv | |- w |
| 8 | 7 6 | cfv | |- ( Base ` w ) |
| 9 | 5 8 | wcel | |- x e. ( Base ` w ) |
| 10 | vz | |- z |
|
| 11 | 10 | cv | |- z |
| 12 | cmulr | |- .r |
|
| 13 | 7 12 | cfv | |- ( .r ` w ) |
| 14 | 11 5 13 | co | |- ( z ( .r ` w ) x ) |
| 15 | 4 | cv | |- y |
| 16 | 14 15 | wceq | |- ( z ( .r ` w ) x ) = y |
| 17 | 16 10 8 | wrex | |- E. z e. ( Base ` w ) ( z ( .r ` w ) x ) = y |
| 18 | 9 17 | wa | |- ( x e. ( Base ` w ) /\ E. z e. ( Base ` w ) ( z ( .r ` w ) x ) = y ) |
| 19 | 18 3 4 | copab | |- { <. x , y >. | ( x e. ( Base ` w ) /\ E. z e. ( Base ` w ) ( z ( .r ` w ) x ) = y ) } |
| 20 | 1 2 19 | cmpt | |- ( w e. _V |-> { <. x , y >. | ( x e. ( Base ` w ) /\ E. z e. ( Base ` w ) ( z ( .r ` w ) x ) = y ) } ) |
| 21 | 0 20 | wceq | |- ||r = ( w e. _V |-> { <. x , y >. | ( x e. ( Base ` w ) /\ E. z e. ( Base ` w ) ( z ( .r ` w ) x ) = y ) } ) |