This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonempty ordered pair class abstraction. (Contributed by NM, 10-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opabn0 | |- ( { <. x , y >. | ph } =/= (/) <-> E. x E. y ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | |- ( { <. x , y >. | ph } =/= (/) <-> E. z z e. { <. x , y >. | ph } ) |
|
| 2 | elopab | |- ( z e. { <. x , y >. | ph } <-> E. x E. y ( z = <. x , y >. /\ ph ) ) |
|
| 3 | 2 | exbii | |- ( E. z z e. { <. x , y >. | ph } <-> E. z E. x E. y ( z = <. x , y >. /\ ph ) ) |
| 4 | exrot3 | |- ( E. z E. x E. y ( z = <. x , y >. /\ ph ) <-> E. x E. y E. z ( z = <. x , y >. /\ ph ) ) |
|
| 5 | opex | |- <. x , y >. e. _V |
|
| 6 | 5 | isseti | |- E. z z = <. x , y >. |
| 7 | 19.41v | |- ( E. z ( z = <. x , y >. /\ ph ) <-> ( E. z z = <. x , y >. /\ ph ) ) |
|
| 8 | 6 7 | mpbiran | |- ( E. z ( z = <. x , y >. /\ ph ) <-> ph ) |
| 9 | 8 | 2exbii | |- ( E. x E. y E. z ( z = <. x , y >. /\ ph ) <-> E. x E. y ph ) |
| 10 | 4 9 | bitri | |- ( E. z E. x E. y ( z = <. x , y >. /\ ph ) <-> E. x E. y ph ) |
| 11 | 3 10 | bitri | |- ( E. z z e. { <. x , y >. | ph } <-> E. x E. y ph ) |
| 12 | 1 11 | bitri | |- ( { <. x , y >. | ph } =/= (/) <-> E. x E. y ph ) |