This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr.1 | |- B = ( Base ` R ) |
|
| dvdsr.2 | |- .|| = ( ||r ` R ) |
||
| dvdsr.3 | |- .x. = ( .r ` R ) |
||
| Assertion | dvdsr | |- ( X .|| Y <-> ( X e. B /\ E. z e. B ( z .x. X ) = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | |- B = ( Base ` R ) |
|
| 2 | dvdsr.2 | |- .|| = ( ||r ` R ) |
|
| 3 | dvdsr.3 | |- .x. = ( .r ` R ) |
|
| 4 | 2 | reldvdsr | |- Rel .|| |
| 5 | 4 | brrelex12i | |- ( X .|| Y -> ( X e. _V /\ Y e. _V ) ) |
| 6 | elex | |- ( X e. B -> X e. _V ) |
|
| 7 | id | |- ( ( z .x. X ) = Y -> ( z .x. X ) = Y ) |
|
| 8 | ovex | |- ( z .x. X ) e. _V |
|
| 9 | 7 8 | eqeltrrdi | |- ( ( z .x. X ) = Y -> Y e. _V ) |
| 10 | 9 | rexlimivw | |- ( E. z e. B ( z .x. X ) = Y -> Y e. _V ) |
| 11 | 6 10 | anim12i | |- ( ( X e. B /\ E. z e. B ( z .x. X ) = Y ) -> ( X e. _V /\ Y e. _V ) ) |
| 12 | simpl | |- ( ( x = X /\ y = Y ) -> x = X ) |
|
| 13 | 12 | eleq1d | |- ( ( x = X /\ y = Y ) -> ( x e. B <-> X e. B ) ) |
| 14 | 12 | oveq2d | |- ( ( x = X /\ y = Y ) -> ( z .x. x ) = ( z .x. X ) ) |
| 15 | simpr | |- ( ( x = X /\ y = Y ) -> y = Y ) |
|
| 16 | 14 15 | eqeq12d | |- ( ( x = X /\ y = Y ) -> ( ( z .x. x ) = y <-> ( z .x. X ) = Y ) ) |
| 17 | 16 | rexbidv | |- ( ( x = X /\ y = Y ) -> ( E. z e. B ( z .x. x ) = y <-> E. z e. B ( z .x. X ) = Y ) ) |
| 18 | 13 17 | anbi12d | |- ( ( x = X /\ y = Y ) -> ( ( x e. B /\ E. z e. B ( z .x. x ) = y ) <-> ( X e. B /\ E. z e. B ( z .x. X ) = Y ) ) ) |
| 19 | 1 2 3 | dvdsrval | |- .|| = { <. x , y >. | ( x e. B /\ E. z e. B ( z .x. x ) = y ) } |
| 20 | 18 19 | brabga | |- ( ( X e. _V /\ Y e. _V ) -> ( X .|| Y <-> ( X e. B /\ E. z e. B ( z .x. X ) = Y ) ) ) |
| 21 | 5 11 20 | pm5.21nii | |- ( X .|| Y <-> ( X e. B /\ E. z e. B ( z .x. X ) = Y ) ) |