This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opabex3.1 | |- A e. _V |
|
| opabex3.2 | |- ( x e. A -> { y | ph } e. _V ) |
||
| Assertion | opabex3 | |- { <. x , y >. | ( x e. A /\ ph ) } e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabex3.1 | |- A e. _V |
|
| 2 | opabex3.2 | |- ( x e. A -> { y | ph } e. _V ) |
|
| 3 | 19.42v | |- ( E. y ( x e. A /\ ( z = <. x , y >. /\ ph ) ) <-> ( x e. A /\ E. y ( z = <. x , y >. /\ ph ) ) ) |
|
| 4 | an12 | |- ( ( z = <. x , y >. /\ ( x e. A /\ ph ) ) <-> ( x e. A /\ ( z = <. x , y >. /\ ph ) ) ) |
|
| 5 | 4 | exbii | |- ( E. y ( z = <. x , y >. /\ ( x e. A /\ ph ) ) <-> E. y ( x e. A /\ ( z = <. x , y >. /\ ph ) ) ) |
| 6 | elxp | |- ( z e. ( { x } X. { y | ph } ) <-> E. v E. w ( z = <. v , w >. /\ ( v e. { x } /\ w e. { y | ph } ) ) ) |
|
| 7 | excom | |- ( E. v E. w ( z = <. v , w >. /\ ( v e. { x } /\ w e. { y | ph } ) ) <-> E. w E. v ( z = <. v , w >. /\ ( v e. { x } /\ w e. { y | ph } ) ) ) |
|
| 8 | an12 | |- ( ( z = <. v , w >. /\ ( v e. { x } /\ w e. { y | ph } ) ) <-> ( v e. { x } /\ ( z = <. v , w >. /\ w e. { y | ph } ) ) ) |
|
| 9 | velsn | |- ( v e. { x } <-> v = x ) |
|
| 10 | 9 | anbi1i | |- ( ( v e. { x } /\ ( z = <. v , w >. /\ w e. { y | ph } ) ) <-> ( v = x /\ ( z = <. v , w >. /\ w e. { y | ph } ) ) ) |
| 11 | 8 10 | bitri | |- ( ( z = <. v , w >. /\ ( v e. { x } /\ w e. { y | ph } ) ) <-> ( v = x /\ ( z = <. v , w >. /\ w e. { y | ph } ) ) ) |
| 12 | 11 | exbii | |- ( E. v ( z = <. v , w >. /\ ( v e. { x } /\ w e. { y | ph } ) ) <-> E. v ( v = x /\ ( z = <. v , w >. /\ w e. { y | ph } ) ) ) |
| 13 | opeq1 | |- ( v = x -> <. v , w >. = <. x , w >. ) |
|
| 14 | 13 | eqeq2d | |- ( v = x -> ( z = <. v , w >. <-> z = <. x , w >. ) ) |
| 15 | 14 | anbi1d | |- ( v = x -> ( ( z = <. v , w >. /\ w e. { y | ph } ) <-> ( z = <. x , w >. /\ w e. { y | ph } ) ) ) |
| 16 | 15 | equsexvw | |- ( E. v ( v = x /\ ( z = <. v , w >. /\ w e. { y | ph } ) ) <-> ( z = <. x , w >. /\ w e. { y | ph } ) ) |
| 17 | 12 16 | bitri | |- ( E. v ( z = <. v , w >. /\ ( v e. { x } /\ w e. { y | ph } ) ) <-> ( z = <. x , w >. /\ w e. { y | ph } ) ) |
| 18 | 17 | exbii | |- ( E. w E. v ( z = <. v , w >. /\ ( v e. { x } /\ w e. { y | ph } ) ) <-> E. w ( z = <. x , w >. /\ w e. { y | ph } ) ) |
| 19 | 7 18 | bitri | |- ( E. v E. w ( z = <. v , w >. /\ ( v e. { x } /\ w e. { y | ph } ) ) <-> E. w ( z = <. x , w >. /\ w e. { y | ph } ) ) |
| 20 | nfv | |- F/ y z = <. x , w >. |
|
| 21 | nfsab1 | |- F/ y w e. { y | ph } |
|
| 22 | 20 21 | nfan | |- F/ y ( z = <. x , w >. /\ w e. { y | ph } ) |
| 23 | nfv | |- F/ w ( z = <. x , y >. /\ ph ) |
|
| 24 | opeq2 | |- ( w = y -> <. x , w >. = <. x , y >. ) |
|
| 25 | 24 | eqeq2d | |- ( w = y -> ( z = <. x , w >. <-> z = <. x , y >. ) ) |
| 26 | df-clab | |- ( w e. { y | ph } <-> [ w / y ] ph ) |
|
| 27 | sbequ12 | |- ( y = w -> ( ph <-> [ w / y ] ph ) ) |
|
| 28 | 27 | equcoms | |- ( w = y -> ( ph <-> [ w / y ] ph ) ) |
| 29 | 26 28 | bitr4id | |- ( w = y -> ( w e. { y | ph } <-> ph ) ) |
| 30 | 25 29 | anbi12d | |- ( w = y -> ( ( z = <. x , w >. /\ w e. { y | ph } ) <-> ( z = <. x , y >. /\ ph ) ) ) |
| 31 | 22 23 30 | cbvexv1 | |- ( E. w ( z = <. x , w >. /\ w e. { y | ph } ) <-> E. y ( z = <. x , y >. /\ ph ) ) |
| 32 | 6 19 31 | 3bitri | |- ( z e. ( { x } X. { y | ph } ) <-> E. y ( z = <. x , y >. /\ ph ) ) |
| 33 | 32 | anbi2i | |- ( ( x e. A /\ z e. ( { x } X. { y | ph } ) ) <-> ( x e. A /\ E. y ( z = <. x , y >. /\ ph ) ) ) |
| 34 | 3 5 33 | 3bitr4ri | |- ( ( x e. A /\ z e. ( { x } X. { y | ph } ) ) <-> E. y ( z = <. x , y >. /\ ( x e. A /\ ph ) ) ) |
| 35 | 34 | exbii | |- ( E. x ( x e. A /\ z e. ( { x } X. { y | ph } ) ) <-> E. x E. y ( z = <. x , y >. /\ ( x e. A /\ ph ) ) ) |
| 36 | eliun | |- ( z e. U_ x e. A ( { x } X. { y | ph } ) <-> E. x e. A z e. ( { x } X. { y | ph } ) ) |
|
| 37 | df-rex | |- ( E. x e. A z e. ( { x } X. { y | ph } ) <-> E. x ( x e. A /\ z e. ( { x } X. { y | ph } ) ) ) |
|
| 38 | 36 37 | bitri | |- ( z e. U_ x e. A ( { x } X. { y | ph } ) <-> E. x ( x e. A /\ z e. ( { x } X. { y | ph } ) ) ) |
| 39 | elopab | |- ( z e. { <. x , y >. | ( x e. A /\ ph ) } <-> E. x E. y ( z = <. x , y >. /\ ( x e. A /\ ph ) ) ) |
|
| 40 | 35 38 39 | 3bitr4i | |- ( z e. U_ x e. A ( { x } X. { y | ph } ) <-> z e. { <. x , y >. | ( x e. A /\ ph ) } ) |
| 41 | 40 | eqriv | |- U_ x e. A ( { x } X. { y | ph } ) = { <. x , y >. | ( x e. A /\ ph ) } |
| 42 | vsnex | |- { x } e. _V |
|
| 43 | xpexg | |- ( ( { x } e. _V /\ { y | ph } e. _V ) -> ( { x } X. { y | ph } ) e. _V ) |
|
| 44 | 42 2 43 | sylancr | |- ( x e. A -> ( { x } X. { y | ph } ) e. _V ) |
| 45 | 44 | rgen | |- A. x e. A ( { x } X. { y | ph } ) e. _V |
| 46 | iunexg | |- ( ( A e. _V /\ A. x e. A ( { x } X. { y | ph } ) e. _V ) -> U_ x e. A ( { x } X. { y | ph } ) e. _V ) |
|
| 47 | 1 45 46 | mp2an | |- U_ x e. A ( { x } X. { y | ph } ) e. _V |
| 48 | 41 47 | eqeltrri | |- { <. x , y >. | ( x e. A /\ ph ) } e. _V |