This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsfac | |- ( ( K e. NN /\ N e. ( ZZ>= ` K ) ) -> K || ( ! ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( x = K -> ( ! ` x ) = ( ! ` K ) ) |
|
| 2 | 1 | breq2d | |- ( x = K -> ( K || ( ! ` x ) <-> K || ( ! ` K ) ) ) |
| 3 | 2 | imbi2d | |- ( x = K -> ( ( K e. NN -> K || ( ! ` x ) ) <-> ( K e. NN -> K || ( ! ` K ) ) ) ) |
| 4 | fveq2 | |- ( x = y -> ( ! ` x ) = ( ! ` y ) ) |
|
| 5 | 4 | breq2d | |- ( x = y -> ( K || ( ! ` x ) <-> K || ( ! ` y ) ) ) |
| 6 | 5 | imbi2d | |- ( x = y -> ( ( K e. NN -> K || ( ! ` x ) ) <-> ( K e. NN -> K || ( ! ` y ) ) ) ) |
| 7 | fveq2 | |- ( x = ( y + 1 ) -> ( ! ` x ) = ( ! ` ( y + 1 ) ) ) |
|
| 8 | 7 | breq2d | |- ( x = ( y + 1 ) -> ( K || ( ! ` x ) <-> K || ( ! ` ( y + 1 ) ) ) ) |
| 9 | 8 | imbi2d | |- ( x = ( y + 1 ) -> ( ( K e. NN -> K || ( ! ` x ) ) <-> ( K e. NN -> K || ( ! ` ( y + 1 ) ) ) ) ) |
| 10 | fveq2 | |- ( x = N -> ( ! ` x ) = ( ! ` N ) ) |
|
| 11 | 10 | breq2d | |- ( x = N -> ( K || ( ! ` x ) <-> K || ( ! ` N ) ) ) |
| 12 | 11 | imbi2d | |- ( x = N -> ( ( K e. NN -> K || ( ! ` x ) ) <-> ( K e. NN -> K || ( ! ` N ) ) ) ) |
| 13 | nnm1nn0 | |- ( K e. NN -> ( K - 1 ) e. NN0 ) |
|
| 14 | 13 | faccld | |- ( K e. NN -> ( ! ` ( K - 1 ) ) e. NN ) |
| 15 | 14 | nnzd | |- ( K e. NN -> ( ! ` ( K - 1 ) ) e. ZZ ) |
| 16 | nnz | |- ( K e. NN -> K e. ZZ ) |
|
| 17 | dvdsmul2 | |- ( ( ( ! ` ( K - 1 ) ) e. ZZ /\ K e. ZZ ) -> K || ( ( ! ` ( K - 1 ) ) x. K ) ) |
|
| 18 | 15 16 17 | syl2anc | |- ( K e. NN -> K || ( ( ! ` ( K - 1 ) ) x. K ) ) |
| 19 | facnn2 | |- ( K e. NN -> ( ! ` K ) = ( ( ! ` ( K - 1 ) ) x. K ) ) |
|
| 20 | 18 19 | breqtrrd | |- ( K e. NN -> K || ( ! ` K ) ) |
| 21 | 16 | adantl | |- ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> K e. ZZ ) |
| 22 | elnnuz | |- ( K e. NN <-> K e. ( ZZ>= ` 1 ) ) |
|
| 23 | uztrn | |- ( ( y e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` 1 ) ) -> y e. ( ZZ>= ` 1 ) ) |
|
| 24 | 22 23 | sylan2b | |- ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> y e. ( ZZ>= ` 1 ) ) |
| 25 | elnnuz | |- ( y e. NN <-> y e. ( ZZ>= ` 1 ) ) |
|
| 26 | 24 25 | sylibr | |- ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> y e. NN ) |
| 27 | 26 | nnnn0d | |- ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> y e. NN0 ) |
| 28 | 27 | faccld | |- ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> ( ! ` y ) e. NN ) |
| 29 | 28 | nnzd | |- ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> ( ! ` y ) e. ZZ ) |
| 30 | 26 | nnzd | |- ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> y e. ZZ ) |
| 31 | 30 | peano2zd | |- ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> ( y + 1 ) e. ZZ ) |
| 32 | dvdsmultr1 | |- ( ( K e. ZZ /\ ( ! ` y ) e. ZZ /\ ( y + 1 ) e. ZZ ) -> ( K || ( ! ` y ) -> K || ( ( ! ` y ) x. ( y + 1 ) ) ) ) |
|
| 33 | 21 29 31 32 | syl3anc | |- ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> ( K || ( ! ` y ) -> K || ( ( ! ` y ) x. ( y + 1 ) ) ) ) |
| 34 | facp1 | |- ( y e. NN0 -> ( ! ` ( y + 1 ) ) = ( ( ! ` y ) x. ( y + 1 ) ) ) |
|
| 35 | 27 34 | syl | |- ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> ( ! ` ( y + 1 ) ) = ( ( ! ` y ) x. ( y + 1 ) ) ) |
| 36 | 35 | breq2d | |- ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> ( K || ( ! ` ( y + 1 ) ) <-> K || ( ( ! ` y ) x. ( y + 1 ) ) ) ) |
| 37 | 33 36 | sylibrd | |- ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> ( K || ( ! ` y ) -> K || ( ! ` ( y + 1 ) ) ) ) |
| 38 | 37 | ex | |- ( y e. ( ZZ>= ` K ) -> ( K e. NN -> ( K || ( ! ` y ) -> K || ( ! ` ( y + 1 ) ) ) ) ) |
| 39 | 38 | a2d | |- ( y e. ( ZZ>= ` K ) -> ( ( K e. NN -> K || ( ! ` y ) ) -> ( K e. NN -> K || ( ! ` ( y + 1 ) ) ) ) ) |
| 40 | 3 6 9 12 20 39 | uzind4i | |- ( N e. ( ZZ>= ` K ) -> ( K e. NN -> K || ( ! ` N ) ) ) |
| 41 | 40 | impcom | |- ( ( K e. NN /\ N e. ( ZZ>= ` K ) ) -> K || ( ! ` N ) ) |