This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsfac | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐾 ∥ ( ! ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑥 = 𝐾 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝐾 ) ) | |
| 2 | 1 | breq2d | ⊢ ( 𝑥 = 𝐾 → ( 𝐾 ∥ ( ! ‘ 𝑥 ) ↔ 𝐾 ∥ ( ! ‘ 𝐾 ) ) ) |
| 3 | 2 | imbi2d | ⊢ ( 𝑥 = 𝐾 → ( ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝑥 ) ) ↔ ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝐾 ) ) ) ) |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑦 ) ) | |
| 5 | 4 | breq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐾 ∥ ( ! ‘ 𝑥 ) ↔ 𝐾 ∥ ( ! ‘ 𝑦 ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝑥 ) ) ↔ ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝑦 ) ) ) ) |
| 7 | fveq2 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ! ‘ 𝑥 ) = ( ! ‘ ( 𝑦 + 1 ) ) ) | |
| 8 | 7 | breq2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐾 ∥ ( ! ‘ 𝑥 ) ↔ 𝐾 ∥ ( ! ‘ ( 𝑦 + 1 ) ) ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝑥 ) ) ↔ ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑁 ) ) | |
| 11 | 10 | breq2d | ⊢ ( 𝑥 = 𝑁 → ( 𝐾 ∥ ( ! ‘ 𝑥 ) ↔ 𝐾 ∥ ( ! ‘ 𝑁 ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝑥 ) ) ↔ ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝑁 ) ) ) ) |
| 13 | nnm1nn0 | ⊢ ( 𝐾 ∈ ℕ → ( 𝐾 − 1 ) ∈ ℕ0 ) | |
| 14 | 13 | faccld | ⊢ ( 𝐾 ∈ ℕ → ( ! ‘ ( 𝐾 − 1 ) ) ∈ ℕ ) |
| 15 | 14 | nnzd | ⊢ ( 𝐾 ∈ ℕ → ( ! ‘ ( 𝐾 − 1 ) ) ∈ ℤ ) |
| 16 | nnz | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) | |
| 17 | dvdsmul2 | ⊢ ( ( ( ! ‘ ( 𝐾 − 1 ) ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) → 𝐾 ∥ ( ( ! ‘ ( 𝐾 − 1 ) ) · 𝐾 ) ) | |
| 18 | 15 16 17 | syl2anc | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ( ! ‘ ( 𝐾 − 1 ) ) · 𝐾 ) ) |
| 19 | facnn2 | ⊢ ( 𝐾 ∈ ℕ → ( ! ‘ 𝐾 ) = ( ( ! ‘ ( 𝐾 − 1 ) ) · 𝐾 ) ) | |
| 20 | 18 19 | breqtrrd | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝐾 ) ) |
| 21 | 16 | adantl | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → 𝐾 ∈ ℤ ) |
| 22 | elnnuz | ⊢ ( 𝐾 ∈ ℕ ↔ 𝐾 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 23 | uztrn | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑦 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 24 | 22 23 | sylan2b | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → 𝑦 ∈ ( ℤ≥ ‘ 1 ) ) |
| 25 | elnnuz | ⊢ ( 𝑦 ∈ ℕ ↔ 𝑦 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 26 | 24 25 | sylibr | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → 𝑦 ∈ ℕ ) |
| 27 | 26 | nnnn0d | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → 𝑦 ∈ ℕ0 ) |
| 28 | 27 | faccld | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → ( ! ‘ 𝑦 ) ∈ ℕ ) |
| 29 | 28 | nnzd | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → ( ! ‘ 𝑦 ) ∈ ℤ ) |
| 30 | 26 | nnzd | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → 𝑦 ∈ ℤ ) |
| 31 | 30 | peano2zd | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → ( 𝑦 + 1 ) ∈ ℤ ) |
| 32 | dvdsmultr1 | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( ! ‘ 𝑦 ) ∈ ℤ ∧ ( 𝑦 + 1 ) ∈ ℤ ) → ( 𝐾 ∥ ( ! ‘ 𝑦 ) → 𝐾 ∥ ( ( ! ‘ 𝑦 ) · ( 𝑦 + 1 ) ) ) ) | |
| 33 | 21 29 31 32 | syl3anc | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → ( 𝐾 ∥ ( ! ‘ 𝑦 ) → 𝐾 ∥ ( ( ! ‘ 𝑦 ) · ( 𝑦 + 1 ) ) ) ) |
| 34 | facp1 | ⊢ ( 𝑦 ∈ ℕ0 → ( ! ‘ ( 𝑦 + 1 ) ) = ( ( ! ‘ 𝑦 ) · ( 𝑦 + 1 ) ) ) | |
| 35 | 27 34 | syl | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → ( ! ‘ ( 𝑦 + 1 ) ) = ( ( ! ‘ 𝑦 ) · ( 𝑦 + 1 ) ) ) |
| 36 | 35 | breq2d | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → ( 𝐾 ∥ ( ! ‘ ( 𝑦 + 1 ) ) ↔ 𝐾 ∥ ( ( ! ‘ 𝑦 ) · ( 𝑦 + 1 ) ) ) ) |
| 37 | 33 36 | sylibrd | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → ( 𝐾 ∥ ( ! ‘ 𝑦 ) → 𝐾 ∥ ( ! ‘ ( 𝑦 + 1 ) ) ) ) |
| 38 | 37 | ex | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝐾 ∈ ℕ → ( 𝐾 ∥ ( ! ‘ 𝑦 ) → 𝐾 ∥ ( ! ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 39 | 38 | a2d | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) → ( ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝑦 ) ) → ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 40 | 3 6 9 12 20 39 | uzind4i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝑁 ) ) ) |
| 41 | 40 | impcom | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐾 ∥ ( ! ‘ 𝑁 ) ) |