This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer divides another integer, then it also divides any of its powers. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsexp2im | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) -> ( K || M -> K || ( M ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides | |- ( ( K e. ZZ /\ M e. ZZ ) -> ( K || M <-> E. m e. ZZ ( m x. K ) = M ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) -> ( K || M <-> E. m e. ZZ ( m x. K ) = M ) ) |
| 3 | simpl1 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> K e. ZZ ) |
|
| 4 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 5 | 4 | 3ad2ant3 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) -> N e. NN0 ) |
| 6 | 5 | adantr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> N e. NN0 ) |
| 7 | zexpcl | |- ( ( K e. ZZ /\ N e. NN0 ) -> ( K ^ N ) e. ZZ ) |
|
| 8 | 3 6 7 | syl2anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> ( K ^ N ) e. ZZ ) |
| 9 | simpr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> m e. ZZ ) |
|
| 10 | zexpcl | |- ( ( m e. ZZ /\ N e. NN0 ) -> ( m ^ N ) e. ZZ ) |
|
| 11 | 9 6 10 | syl2anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> ( m ^ N ) e. ZZ ) |
| 12 | 11 8 | zmulcld | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> ( ( m ^ N ) x. ( K ^ N ) ) e. ZZ ) |
| 13 | simpl3 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> N e. NN ) |
|
| 14 | iddvdsexp | |- ( ( K e. ZZ /\ N e. NN ) -> K || ( K ^ N ) ) |
|
| 15 | 3 13 14 | syl2anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> K || ( K ^ N ) ) |
| 16 | dvdsmul2 | |- ( ( ( m ^ N ) e. ZZ /\ ( K ^ N ) e. ZZ ) -> ( K ^ N ) || ( ( m ^ N ) x. ( K ^ N ) ) ) |
|
| 17 | 11 8 16 | syl2anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> ( K ^ N ) || ( ( m ^ N ) x. ( K ^ N ) ) ) |
| 18 | 3 8 12 15 17 | dvdstrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> K || ( ( m ^ N ) x. ( K ^ N ) ) ) |
| 19 | zcn | |- ( m e. ZZ -> m e. CC ) |
|
| 20 | 19 | adantl | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> m e. CC ) |
| 21 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 22 | 21 | 3ad2ant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) -> K e. CC ) |
| 23 | 22 | adantr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> K e. CC ) |
| 24 | 20 23 6 | mulexpd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> ( ( m x. K ) ^ N ) = ( ( m ^ N ) x. ( K ^ N ) ) ) |
| 25 | 18 24 | breqtrrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> K || ( ( m x. K ) ^ N ) ) |
| 26 | oveq1 | |- ( ( m x. K ) = M -> ( ( m x. K ) ^ N ) = ( M ^ N ) ) |
|
| 27 | 26 | breq2d | |- ( ( m x. K ) = M -> ( K || ( ( m x. K ) ^ N ) <-> K || ( M ^ N ) ) ) |
| 28 | 25 27 | syl5ibcom | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> ( ( m x. K ) = M -> K || ( M ^ N ) ) ) |
| 29 | 28 | rexlimdva | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) -> ( E. m e. ZZ ( m x. K ) = M -> K || ( M ^ N ) ) ) |
| 30 | 2 29 | sylbid | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) -> ( K || M -> K || ( M ^ N ) ) ) |