This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left ideals and ring span of a ring depend only on the ring components. Here W is expected to be either B (when closure is available) or _V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| lidlpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| lidlpropd.3 | |- ( ph -> B C_ W ) |
||
| lidlpropd.4 | |- ( ( ph /\ ( x e. W /\ y e. W ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| lidlpropd.5 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) e. W ) |
||
| lidlpropd.6 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
||
| Assertion | lidlrsppropd | |- ( ph -> ( ( LIdeal ` K ) = ( LIdeal ` L ) /\ ( RSpan ` K ) = ( RSpan ` L ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | lidlpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | lidlpropd.3 | |- ( ph -> B C_ W ) |
|
| 4 | lidlpropd.4 | |- ( ( ph /\ ( x e. W /\ y e. W ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 5 | lidlpropd.5 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) e. W ) |
|
| 6 | lidlpropd.6 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
|
| 7 | rlmbas | |- ( Base ` K ) = ( Base ` ( ringLMod ` K ) ) |
|
| 8 | 1 7 | eqtrdi | |- ( ph -> B = ( Base ` ( ringLMod ` K ) ) ) |
| 9 | rlmbas | |- ( Base ` L ) = ( Base ` ( ringLMod ` L ) ) |
|
| 10 | 2 9 | eqtrdi | |- ( ph -> B = ( Base ` ( ringLMod ` L ) ) ) |
| 11 | rlmplusg | |- ( +g ` K ) = ( +g ` ( ringLMod ` K ) ) |
|
| 12 | 11 | oveqi | |- ( x ( +g ` K ) y ) = ( x ( +g ` ( ringLMod ` K ) ) y ) |
| 13 | rlmplusg | |- ( +g ` L ) = ( +g ` ( ringLMod ` L ) ) |
|
| 14 | 13 | oveqi | |- ( x ( +g ` L ) y ) = ( x ( +g ` ( ringLMod ` L ) ) y ) |
| 15 | 4 12 14 | 3eqtr3g | |- ( ( ph /\ ( x e. W /\ y e. W ) ) -> ( x ( +g ` ( ringLMod ` K ) ) y ) = ( x ( +g ` ( ringLMod ` L ) ) y ) ) |
| 16 | rlmvsca | |- ( .r ` K ) = ( .s ` ( ringLMod ` K ) ) |
|
| 17 | 16 | oveqi | |- ( x ( .r ` K ) y ) = ( x ( .s ` ( ringLMod ` K ) ) y ) |
| 18 | 17 5 | eqeltrrid | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .s ` ( ringLMod ` K ) ) y ) e. W ) |
| 19 | rlmvsca | |- ( .r ` L ) = ( .s ` ( ringLMod ` L ) ) |
|
| 20 | 19 | oveqi | |- ( x ( .r ` L ) y ) = ( x ( .s ` ( ringLMod ` L ) ) y ) |
| 21 | 6 17 20 | 3eqtr3g | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .s ` ( ringLMod ` K ) ) y ) = ( x ( .s ` ( ringLMod ` L ) ) y ) ) |
| 22 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 23 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 24 | 22 23 | strfvi | |- ( Base ` K ) = ( Base ` ( _I ` K ) ) |
| 25 | rlmsca2 | |- ( _I ` K ) = ( Scalar ` ( ringLMod ` K ) ) |
|
| 26 | 25 | fveq2i | |- ( Base ` ( _I ` K ) ) = ( Base ` ( Scalar ` ( ringLMod ` K ) ) ) |
| 27 | 24 26 | eqtri | |- ( Base ` K ) = ( Base ` ( Scalar ` ( ringLMod ` K ) ) ) |
| 28 | 1 27 | eqtrdi | |- ( ph -> B = ( Base ` ( Scalar ` ( ringLMod ` K ) ) ) ) |
| 29 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 30 | 22 29 | strfvi | |- ( Base ` L ) = ( Base ` ( _I ` L ) ) |
| 31 | rlmsca2 | |- ( _I ` L ) = ( Scalar ` ( ringLMod ` L ) ) |
|
| 32 | 31 | fveq2i | |- ( Base ` ( _I ` L ) ) = ( Base ` ( Scalar ` ( ringLMod ` L ) ) ) |
| 33 | 30 32 | eqtri | |- ( Base ` L ) = ( Base ` ( Scalar ` ( ringLMod ` L ) ) ) |
| 34 | 2 33 | eqtrdi | |- ( ph -> B = ( Base ` ( Scalar ` ( ringLMod ` L ) ) ) ) |
| 35 | 8 10 3 15 18 21 28 34 | lsspropd | |- ( ph -> ( LSubSp ` ( ringLMod ` K ) ) = ( LSubSp ` ( ringLMod ` L ) ) ) |
| 36 | lidlval | |- ( LIdeal ` K ) = ( LSubSp ` ( ringLMod ` K ) ) |
|
| 37 | lidlval | |- ( LIdeal ` L ) = ( LSubSp ` ( ringLMod ` L ) ) |
|
| 38 | 35 36 37 | 3eqtr4g | |- ( ph -> ( LIdeal ` K ) = ( LIdeal ` L ) ) |
| 39 | fvexd | |- ( ph -> ( ringLMod ` K ) e. _V ) |
|
| 40 | fvexd | |- ( ph -> ( ringLMod ` L ) e. _V ) |
|
| 41 | 8 10 3 15 18 21 28 34 39 40 | lsppropd | |- ( ph -> ( LSpan ` ( ringLMod ` K ) ) = ( LSpan ` ( ringLMod ` L ) ) ) |
| 42 | rspval | |- ( RSpan ` K ) = ( LSpan ` ( ringLMod ` K ) ) |
|
| 43 | rspval | |- ( RSpan ` L ) = ( LSpan ` ( ringLMod ` L ) ) |
|
| 44 | 41 42 43 | 3eqtr4g | |- ( ph -> ( RSpan ` K ) = ( RSpan ` L ) ) |
| 45 | 38 44 | jca | |- ( ph -> ( ( LIdeal ` K ) = ( LIdeal ` L ) /\ ( RSpan ` K ) = ( RSpan ` L ) ) ) |