This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ideal contains 1 iff it is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Wolf Lammen, 6-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlcl.u | |- U = ( LIdeal ` R ) |
|
| lidlcl.b | |- B = ( Base ` R ) |
||
| lidl1el.o | |- .1. = ( 1r ` R ) |
||
| Assertion | lidl1el | |- ( ( R e. Ring /\ I e. U ) -> ( .1. e. I <-> I = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlcl.u | |- U = ( LIdeal ` R ) |
|
| 2 | lidlcl.b | |- B = ( Base ` R ) |
|
| 3 | lidl1el.o | |- .1. = ( 1r ` R ) |
|
| 4 | 2 1 | lidlss | |- ( I e. U -> I C_ B ) |
| 5 | 4 | ad2antlr | |- ( ( ( R e. Ring /\ I e. U ) /\ .1. e. I ) -> I C_ B ) |
| 6 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 7 | 2 6 3 | ringridm | |- ( ( R e. Ring /\ a e. B ) -> ( a ( .r ` R ) .1. ) = a ) |
| 8 | 7 | ad2ant2rl | |- ( ( ( R e. Ring /\ I e. U ) /\ ( .1. e. I /\ a e. B ) ) -> ( a ( .r ` R ) .1. ) = a ) |
| 9 | 1 2 6 | lidlmcl | |- ( ( ( R e. Ring /\ I e. U ) /\ ( a e. B /\ .1. e. I ) ) -> ( a ( .r ` R ) .1. ) e. I ) |
| 10 | 9 | ancom2s | |- ( ( ( R e. Ring /\ I e. U ) /\ ( .1. e. I /\ a e. B ) ) -> ( a ( .r ` R ) .1. ) e. I ) |
| 11 | 8 10 | eqeltrrd | |- ( ( ( R e. Ring /\ I e. U ) /\ ( .1. e. I /\ a e. B ) ) -> a e. I ) |
| 12 | 11 | expr | |- ( ( ( R e. Ring /\ I e. U ) /\ .1. e. I ) -> ( a e. B -> a e. I ) ) |
| 13 | 12 | ssrdv | |- ( ( ( R e. Ring /\ I e. U ) /\ .1. e. I ) -> B C_ I ) |
| 14 | 5 13 | eqssd | |- ( ( ( R e. Ring /\ I e. U ) /\ .1. e. I ) -> I = B ) |
| 15 | 14 | ex | |- ( ( R e. Ring /\ I e. U ) -> ( .1. e. I -> I = B ) ) |
| 16 | 2 3 | ringidcl | |- ( R e. Ring -> .1. e. B ) |
| 17 | 16 | adantr | |- ( ( R e. Ring /\ I e. U ) -> .1. e. B ) |
| 18 | eleq2 | |- ( I = B -> ( .1. e. I <-> .1. e. B ) ) |
|
| 19 | 17 18 | syl5ibrcom | |- ( ( R e. Ring /\ I e. U ) -> ( I = B -> .1. e. I ) ) |
| 20 | 15 19 | impbid | |- ( ( R e. Ring /\ I e. U ) -> ( .1. e. I <-> I = B ) ) |