This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty family is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dprd0.0 | |- .0. = ( 0g ` G ) |
|
| Assertion | dprd0 | |- ( G e. Grp -> ( G dom DProd (/) /\ ( G DProd (/) ) = { .0. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprd0.0 | |- .0. = ( 0g ` G ) |
|
| 2 | 0ex | |- (/) e. _V |
|
| 3 | 1 | dprdz | |- ( ( G e. Grp /\ (/) e. _V ) -> ( G dom DProd ( x e. (/) |-> { .0. } ) /\ ( G DProd ( x e. (/) |-> { .0. } ) ) = { .0. } ) ) |
| 4 | 2 3 | mpan2 | |- ( G e. Grp -> ( G dom DProd ( x e. (/) |-> { .0. } ) /\ ( G DProd ( x e. (/) |-> { .0. } ) ) = { .0. } ) ) |
| 5 | mpt0 | |- ( x e. (/) |-> { .0. } ) = (/) |
|
| 6 | 5 | breq2i | |- ( G dom DProd ( x e. (/) |-> { .0. } ) <-> G dom DProd (/) ) |
| 7 | 5 | oveq2i | |- ( G DProd ( x e. (/) |-> { .0. } ) ) = ( G DProd (/) ) |
| 8 | 7 | eqeq1i | |- ( ( G DProd ( x e. (/) |-> { .0. } ) ) = { .0. } <-> ( G DProd (/) ) = { .0. } ) |
| 9 | 6 8 | anbi12i | |- ( ( G dom DProd ( x e. (/) |-> { .0. } ) /\ ( G DProd ( x e. (/) |-> { .0. } ) ) = { .0. } ) <-> ( G dom DProd (/) /\ ( G DProd (/) ) = { .0. } ) ) |
| 10 | 4 9 | sylib | |- ( G e. Grp -> ( G dom DProd (/) /\ ( G DProd (/) ) = { .0. } ) ) |