This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fnwe2 . Substitute variables. (Contributed by Stefan O'Rear, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnwe2.su | |- ( z = ( F ` x ) -> S = U ) |
|
| fnwe2.t | |- T = { <. x , y >. | ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x U y ) ) } |
||
| Assertion | fnwe2val | |- ( a T b <-> ( ( F ` a ) R ( F ` b ) \/ ( ( F ` a ) = ( F ` b ) /\ a [_ ( F ` a ) / z ]_ S b ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnwe2.su | |- ( z = ( F ` x ) -> S = U ) |
|
| 2 | fnwe2.t | |- T = { <. x , y >. | ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x U y ) ) } |
|
| 3 | vex | |- a e. _V |
|
| 4 | vex | |- b e. _V |
|
| 5 | fveq2 | |- ( x = a -> ( F ` x ) = ( F ` a ) ) |
|
| 6 | fveq2 | |- ( y = b -> ( F ` y ) = ( F ` b ) ) |
|
| 7 | 5 6 | breqan12d | |- ( ( x = a /\ y = b ) -> ( ( F ` x ) R ( F ` y ) <-> ( F ` a ) R ( F ` b ) ) ) |
| 8 | 5 6 | eqeqan12d | |- ( ( x = a /\ y = b ) -> ( ( F ` x ) = ( F ` y ) <-> ( F ` a ) = ( F ` b ) ) ) |
| 9 | simpl | |- ( ( x = a /\ y = b ) -> x = a ) |
|
| 10 | fvex | |- ( F ` x ) e. _V |
|
| 11 | 10 1 | csbie | |- [_ ( F ` x ) / z ]_ S = U |
| 12 | 5 | csbeq1d | |- ( x = a -> [_ ( F ` x ) / z ]_ S = [_ ( F ` a ) / z ]_ S ) |
| 13 | 11 12 | eqtr3id | |- ( x = a -> U = [_ ( F ` a ) / z ]_ S ) |
| 14 | 13 | adantr | |- ( ( x = a /\ y = b ) -> U = [_ ( F ` a ) / z ]_ S ) |
| 15 | simpr | |- ( ( x = a /\ y = b ) -> y = b ) |
|
| 16 | 9 14 15 | breq123d | |- ( ( x = a /\ y = b ) -> ( x U y <-> a [_ ( F ` a ) / z ]_ S b ) ) |
| 17 | 8 16 | anbi12d | |- ( ( x = a /\ y = b ) -> ( ( ( F ` x ) = ( F ` y ) /\ x U y ) <-> ( ( F ` a ) = ( F ` b ) /\ a [_ ( F ` a ) / z ]_ S b ) ) ) |
| 18 | 7 17 | orbi12d | |- ( ( x = a /\ y = b ) -> ( ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x U y ) ) <-> ( ( F ` a ) R ( F ` b ) \/ ( ( F ` a ) = ( F ` b ) /\ a [_ ( F ` a ) / z ]_ S b ) ) ) ) |
| 19 | 3 4 18 2 | braba | |- ( a T b <-> ( ( F ` a ) R ( F ` b ) \/ ( ( F ` a ) = ( F ` b ) /\ a [_ ( F ` a ) / z ]_ S b ) ) ) |