This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the ordinal injection function. (Contributed by Stefan O'Rear, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dnnumch.f | |- F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |
|
| dnnumch.a | |- ( ph -> A e. V ) |
||
| dnnumch.g | |- ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) |
||
| Assertion | dnnumch3lem | |- ( ( ph /\ w e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnnumch.f | |- F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |
|
| 2 | dnnumch.a | |- ( ph -> A e. V ) |
|
| 3 | dnnumch.g | |- ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) |
|
| 4 | eqid | |- ( x e. A |-> |^| ( `' F " { x } ) ) = ( x e. A |-> |^| ( `' F " { x } ) ) |
|
| 5 | sneq | |- ( x = w -> { x } = { w } ) |
|
| 6 | 5 | imaeq2d | |- ( x = w -> ( `' F " { x } ) = ( `' F " { w } ) ) |
| 7 | 6 | inteqd | |- ( x = w -> |^| ( `' F " { x } ) = |^| ( `' F " { w } ) ) |
| 8 | simpr | |- ( ( ph /\ w e. A ) -> w e. A ) |
|
| 9 | cnvimass | |- ( `' F " { w } ) C_ dom F |
|
| 10 | 1 | tfr1 | |- F Fn On |
| 11 | 10 | fndmi | |- dom F = On |
| 12 | 9 11 | sseqtri | |- ( `' F " { w } ) C_ On |
| 13 | 1 2 3 | dnnumch2 | |- ( ph -> A C_ ran F ) |
| 14 | 13 | sselda | |- ( ( ph /\ w e. A ) -> w e. ran F ) |
| 15 | inisegn0 | |- ( w e. ran F <-> ( `' F " { w } ) =/= (/) ) |
|
| 16 | 14 15 | sylib | |- ( ( ph /\ w e. A ) -> ( `' F " { w } ) =/= (/) ) |
| 17 | oninton | |- ( ( ( `' F " { w } ) C_ On /\ ( `' F " { w } ) =/= (/) ) -> |^| ( `' F " { w } ) e. On ) |
|
| 18 | 12 16 17 | sylancr | |- ( ( ph /\ w e. A ) -> |^| ( `' F " { w } ) e. On ) |
| 19 | 4 7 8 18 | fvmptd3 | |- ( ( ph /\ w e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) |