This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express a constant function. (Contributed by NM, 15-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fconst3 | |- ( F : A --> { B } <-> ( F Fn A /\ A C_ ( `' F " { B } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstfv | |- ( F : A --> { B } <-> ( F Fn A /\ A. x e. A ( F ` x ) = B ) ) |
|
| 2 | fnfun | |- ( F Fn A -> Fun F ) |
|
| 3 | fndm | |- ( F Fn A -> dom F = A ) |
|
| 4 | eqimss2 | |- ( dom F = A -> A C_ dom F ) |
|
| 5 | 3 4 | syl | |- ( F Fn A -> A C_ dom F ) |
| 6 | funconstss | |- ( ( Fun F /\ A C_ dom F ) -> ( A. x e. A ( F ` x ) = B <-> A C_ ( `' F " { B } ) ) ) |
|
| 7 | 2 5 6 | syl2anc | |- ( F Fn A -> ( A. x e. A ( F ` x ) = B <-> A C_ ( `' F " { B } ) ) ) |
| 8 | 7 | pm5.32i | |- ( ( F Fn A /\ A. x e. A ( F ` x ) = B ) <-> ( F Fn A /\ A C_ ( `' F " { B } ) ) ) |
| 9 | 1 8 | bitri | |- ( F : A --> { B } <-> ( F Fn A /\ A C_ ( `' F " { B } ) ) ) |