This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division of a nonnegative integer by a positive number is not negative. (Contributed by Alexander van der Vekens, 14-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0ge0div | |- ( ( K e. NN0 /\ L e. NN ) -> 0 <_ ( K / L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ge0 | |- ( K e. NN0 -> 0 <_ K ) |
|
| 2 | 1 | adantr | |- ( ( K e. NN0 /\ L e. NN ) -> 0 <_ K ) |
| 3 | elnnz | |- ( L e. NN <-> ( L e. ZZ /\ 0 < L ) ) |
|
| 4 | nn0re | |- ( K e. NN0 -> K e. RR ) |
|
| 5 | 4 | adantr | |- ( ( K e. NN0 /\ ( L e. ZZ /\ 0 < L ) ) -> K e. RR ) |
| 6 | zre | |- ( L e. ZZ -> L e. RR ) |
|
| 7 | 6 | ad2antrl | |- ( ( K e. NN0 /\ ( L e. ZZ /\ 0 < L ) ) -> L e. RR ) |
| 8 | simprr | |- ( ( K e. NN0 /\ ( L e. ZZ /\ 0 < L ) ) -> 0 < L ) |
|
| 9 | 5 7 8 | 3jca | |- ( ( K e. NN0 /\ ( L e. ZZ /\ 0 < L ) ) -> ( K e. RR /\ L e. RR /\ 0 < L ) ) |
| 10 | 3 9 | sylan2b | |- ( ( K e. NN0 /\ L e. NN ) -> ( K e. RR /\ L e. RR /\ 0 < L ) ) |
| 11 | ge0div | |- ( ( K e. RR /\ L e. RR /\ 0 < L ) -> ( 0 <_ K <-> 0 <_ ( K / L ) ) ) |
|
| 12 | 10 11 | syl | |- ( ( K e. NN0 /\ L e. NN ) -> ( 0 <_ K <-> 0 <_ ( K / L ) ) ) |
| 13 | 2 12 | mpbid | |- ( ( K e. NN0 /\ L e. NN ) -> 0 <_ ( K / L ) ) |