This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divcxp | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> ( ( A / B ) ^c C ) = ( ( A ^c C ) / ( B ^c C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> A e. RR ) |
|
| 2 | simp1r | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> 0 <_ A ) |
|
| 3 | simp2 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> B e. RR+ ) |
|
| 4 | 3 | rpreccld | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> ( 1 / B ) e. RR+ ) |
| 5 | 4 | rpred | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> ( 1 / B ) e. RR ) |
| 6 | 4 | rpge0d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> 0 <_ ( 1 / B ) ) |
| 7 | simp3 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> C e. CC ) |
|
| 8 | mulcxp | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( ( 1 / B ) e. RR /\ 0 <_ ( 1 / B ) ) /\ C e. CC ) -> ( ( A x. ( 1 / B ) ) ^c C ) = ( ( A ^c C ) x. ( ( 1 / B ) ^c C ) ) ) |
|
| 9 | 1 2 5 6 7 8 | syl221anc | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> ( ( A x. ( 1 / B ) ) ^c C ) = ( ( A ^c C ) x. ( ( 1 / B ) ^c C ) ) ) |
| 10 | cxprec | |- ( ( B e. RR+ /\ C e. CC ) -> ( ( 1 / B ) ^c C ) = ( 1 / ( B ^c C ) ) ) |
|
| 11 | 3 7 10 | syl2anc | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> ( ( 1 / B ) ^c C ) = ( 1 / ( B ^c C ) ) ) |
| 12 | 11 | oveq2d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> ( ( A ^c C ) x. ( ( 1 / B ) ^c C ) ) = ( ( A ^c C ) x. ( 1 / ( B ^c C ) ) ) ) |
| 13 | 9 12 | eqtrd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> ( ( A x. ( 1 / B ) ) ^c C ) = ( ( A ^c C ) x. ( 1 / ( B ^c C ) ) ) ) |
| 14 | 1 | recnd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> A e. CC ) |
| 15 | 3 | rpcnd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> B e. CC ) |
| 16 | 3 | rpne0d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> B =/= 0 ) |
| 17 | 14 15 16 | divrecd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
| 18 | 17 | oveq1d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> ( ( A / B ) ^c C ) = ( ( A x. ( 1 / B ) ) ^c C ) ) |
| 19 | cxpcl | |- ( ( A e. CC /\ C e. CC ) -> ( A ^c C ) e. CC ) |
|
| 20 | 14 7 19 | syl2anc | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> ( A ^c C ) e. CC ) |
| 21 | cxpcl | |- ( ( B e. CC /\ C e. CC ) -> ( B ^c C ) e. CC ) |
|
| 22 | 15 7 21 | syl2anc | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> ( B ^c C ) e. CC ) |
| 23 | cxpne0 | |- ( ( B e. CC /\ B =/= 0 /\ C e. CC ) -> ( B ^c C ) =/= 0 ) |
|
| 24 | 15 16 7 23 | syl3anc | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> ( B ^c C ) =/= 0 ) |
| 25 | 20 22 24 | divrecd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> ( ( A ^c C ) / ( B ^c C ) ) = ( ( A ^c C ) x. ( 1 / ( B ^c C ) ) ) ) |
| 26 | 13 18 25 | 3eqtr4d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> ( ( A / B ) ^c C ) = ( ( A ^c C ) / ( B ^c C ) ) ) |