This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divcxp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 / 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) / ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℝ ) | |
| 2 | simp1r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → 0 ≤ 𝐴 ) | |
| 3 | simp2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℝ+ ) | |
| 4 | 3 | rpreccld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → ( 1 / 𝐵 ) ∈ ℝ+ ) |
| 5 | 4 | rpred | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → ( 1 / 𝐵 ) ∈ ℝ ) |
| 6 | 4 | rpge0d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → 0 ≤ ( 1 / 𝐵 ) ) |
| 7 | simp3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 8 | mulcxp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( ( 1 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝐵 ) ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · ( 1 / 𝐵 ) ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( ( 1 / 𝐵 ) ↑𝑐 𝐶 ) ) ) | |
| 9 | 1 2 5 6 7 8 | syl221anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · ( 1 / 𝐵 ) ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( ( 1 / 𝐵 ) ↑𝑐 𝐶 ) ) ) |
| 10 | cxprec | ⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → ( ( 1 / 𝐵 ) ↑𝑐 𝐶 ) = ( 1 / ( 𝐵 ↑𝑐 𝐶 ) ) ) | |
| 11 | 3 7 10 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → ( ( 1 / 𝐵 ) ↑𝑐 𝐶 ) = ( 1 / ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| 12 | 11 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐶 ) · ( ( 1 / 𝐵 ) ↑𝑐 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 1 / ( 𝐵 ↑𝑐 𝐶 ) ) ) ) |
| 13 | 9 12 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · ( 1 / 𝐵 ) ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 1 / ( 𝐵 ↑𝑐 𝐶 ) ) ) ) |
| 14 | 1 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 15 | 3 | rpcnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 16 | 3 | rpne0d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → 𝐵 ≠ 0 ) |
| 17 | 14 15 16 | divrecd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
| 18 | 17 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 / 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 · ( 1 / 𝐵 ) ) ↑𝑐 𝐶 ) ) |
| 19 | cxpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) | |
| 20 | 14 7 19 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) |
| 21 | cxpcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 ↑𝑐 𝐶 ) ∈ ℂ ) | |
| 22 | 15 7 21 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 ↑𝑐 𝐶 ) ∈ ℂ ) |
| 23 | cxpne0 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐶 ∈ ℂ ) → ( 𝐵 ↑𝑐 𝐶 ) ≠ 0 ) | |
| 24 | 15 16 7 23 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 ↑𝑐 𝐶 ) ≠ 0 ) |
| 25 | 20 22 24 | divrecd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐶 ) / ( 𝐵 ↑𝑐 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 1 / ( 𝐵 ↑𝑐 𝐶 ) ) ) ) |
| 26 | 13 18 25 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 / 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) / ( 𝐵 ↑𝑐 𝐶 ) ) ) |