This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonpositive subtraction. (Contributed by NM, 20-Mar-2008) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suble0 | |- ( ( A e. RR /\ B e. RR ) -> ( ( A - B ) <_ 0 <-> A <_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | suble | |- ( ( A e. RR /\ B e. RR /\ 0 e. RR ) -> ( ( A - B ) <_ 0 <-> ( A - 0 ) <_ B ) ) |
|
| 3 | 1 2 | mp3an3 | |- ( ( A e. RR /\ B e. RR ) -> ( ( A - B ) <_ 0 <-> ( A - 0 ) <_ B ) ) |
| 4 | simpl | |- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
|
| 5 | 4 | recnd | |- ( ( A e. RR /\ B e. RR ) -> A e. CC ) |
| 6 | 5 | subid1d | |- ( ( A e. RR /\ B e. RR ) -> ( A - 0 ) = A ) |
| 7 | 6 | breq1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( A - 0 ) <_ B <-> A <_ B ) ) |
| 8 | 3 7 | bitrd | |- ( ( A e. RR /\ B e. RR ) -> ( ( A - B ) <_ 0 <-> A <_ B ) ) |