This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divalglem0.1 | |- N e. ZZ |
|
| divalglem0.2 | |- D e. ZZ |
||
| Assertion | divalglem0 | |- ( ( R e. ZZ /\ K e. ZZ ) -> ( D || ( N - R ) -> D || ( N - ( R - ( K x. ( abs ` D ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem0.1 | |- N e. ZZ |
|
| 2 | divalglem0.2 | |- D e. ZZ |
|
| 3 | iddvds | |- ( D e. ZZ -> D || D ) |
|
| 4 | dvdsabsb | |- ( ( D e. ZZ /\ D e. ZZ ) -> ( D || D <-> D || ( abs ` D ) ) ) |
|
| 5 | 4 | anidms | |- ( D e. ZZ -> ( D || D <-> D || ( abs ` D ) ) ) |
| 6 | 3 5 | mpbid | |- ( D e. ZZ -> D || ( abs ` D ) ) |
| 7 | 2 6 | ax-mp | |- D || ( abs ` D ) |
| 8 | nn0abscl | |- ( D e. ZZ -> ( abs ` D ) e. NN0 ) |
|
| 9 | 2 8 | ax-mp | |- ( abs ` D ) e. NN0 |
| 10 | 9 | nn0zi | |- ( abs ` D ) e. ZZ |
| 11 | dvdsmultr2 | |- ( ( D e. ZZ /\ K e. ZZ /\ ( abs ` D ) e. ZZ ) -> ( D || ( abs ` D ) -> D || ( K x. ( abs ` D ) ) ) ) |
|
| 12 | 2 10 11 | mp3an13 | |- ( K e. ZZ -> ( D || ( abs ` D ) -> D || ( K x. ( abs ` D ) ) ) ) |
| 13 | 7 12 | mpi | |- ( K e. ZZ -> D || ( K x. ( abs ` D ) ) ) |
| 14 | 13 | adantl | |- ( ( R e. ZZ /\ K e. ZZ ) -> D || ( K x. ( abs ` D ) ) ) |
| 15 | zsubcl | |- ( ( N e. ZZ /\ R e. ZZ ) -> ( N - R ) e. ZZ ) |
|
| 16 | 1 15 | mpan | |- ( R e. ZZ -> ( N - R ) e. ZZ ) |
| 17 | zmulcl | |- ( ( K e. ZZ /\ ( abs ` D ) e. ZZ ) -> ( K x. ( abs ` D ) ) e. ZZ ) |
|
| 18 | 10 17 | mpan2 | |- ( K e. ZZ -> ( K x. ( abs ` D ) ) e. ZZ ) |
| 19 | dvds2add | |- ( ( D e. ZZ /\ ( N - R ) e. ZZ /\ ( K x. ( abs ` D ) ) e. ZZ ) -> ( ( D || ( N - R ) /\ D || ( K x. ( abs ` D ) ) ) -> D || ( ( N - R ) + ( K x. ( abs ` D ) ) ) ) ) |
|
| 20 | 2 16 18 19 | mp3an3an | |- ( ( R e. ZZ /\ K e. ZZ ) -> ( ( D || ( N - R ) /\ D || ( K x. ( abs ` D ) ) ) -> D || ( ( N - R ) + ( K x. ( abs ` D ) ) ) ) ) |
| 21 | 14 20 | mpan2d | |- ( ( R e. ZZ /\ K e. ZZ ) -> ( D || ( N - R ) -> D || ( ( N - R ) + ( K x. ( abs ` D ) ) ) ) ) |
| 22 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 23 | 1 22 | ax-mp | |- N e. CC |
| 24 | zcn | |- ( R e. ZZ -> R e. CC ) |
|
| 25 | 18 | zcnd | |- ( K e. ZZ -> ( K x. ( abs ` D ) ) e. CC ) |
| 26 | subsub | |- ( ( N e. CC /\ R e. CC /\ ( K x. ( abs ` D ) ) e. CC ) -> ( N - ( R - ( K x. ( abs ` D ) ) ) ) = ( ( N - R ) + ( K x. ( abs ` D ) ) ) ) |
|
| 27 | 23 24 25 26 | mp3an3an | |- ( ( R e. ZZ /\ K e. ZZ ) -> ( N - ( R - ( K x. ( abs ` D ) ) ) ) = ( ( N - R ) + ( K x. ( abs ` D ) ) ) ) |
| 28 | 27 | breq2d | |- ( ( R e. ZZ /\ K e. ZZ ) -> ( D || ( N - ( R - ( K x. ( abs ` D ) ) ) ) <-> D || ( ( N - R ) + ( K x. ( abs ` D ) ) ) ) ) |
| 29 | 21 28 | sylibrd | |- ( ( R e. ZZ /\ K e. ZZ ) -> ( D || ( N - R ) -> D || ( N - ( R - ( K x. ( abs ` D ) ) ) ) ) ) |