This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any group equipped with the indiscrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | distgp.1 | |- B = ( Base ` G ) |
|
| distgp.2 | |- J = ( TopOpen ` G ) |
||
| Assertion | indistgp | |- ( ( G e. Grp /\ J = { (/) , B } ) -> G e. TopGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distgp.1 | |- B = ( Base ` G ) |
|
| 2 | distgp.2 | |- J = ( TopOpen ` G ) |
|
| 3 | simpl | |- ( ( G e. Grp /\ J = { (/) , B } ) -> G e. Grp ) |
|
| 4 | simpr | |- ( ( G e. Grp /\ J = { (/) , B } ) -> J = { (/) , B } ) |
|
| 5 | 1 | fvexi | |- B e. _V |
| 6 | indistopon | |- ( B e. _V -> { (/) , B } e. ( TopOn ` B ) ) |
|
| 7 | 5 6 | ax-mp | |- { (/) , B } e. ( TopOn ` B ) |
| 8 | 4 7 | eqeltrdi | |- ( ( G e. Grp /\ J = { (/) , B } ) -> J e. ( TopOn ` B ) ) |
| 9 | 1 2 | istps | |- ( G e. TopSp <-> J e. ( TopOn ` B ) ) |
| 10 | 8 9 | sylibr | |- ( ( G e. Grp /\ J = { (/) , B } ) -> G e. TopSp ) |
| 11 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 12 | 1 11 | grpsubf | |- ( G e. Grp -> ( -g ` G ) : ( B X. B ) --> B ) |
| 13 | 12 | adantr | |- ( ( G e. Grp /\ J = { (/) , B } ) -> ( -g ` G ) : ( B X. B ) --> B ) |
| 14 | 5 5 | xpex | |- ( B X. B ) e. _V |
| 15 | 5 14 | elmap | |- ( ( -g ` G ) e. ( B ^m ( B X. B ) ) <-> ( -g ` G ) : ( B X. B ) --> B ) |
| 16 | 13 15 | sylibr | |- ( ( G e. Grp /\ J = { (/) , B } ) -> ( -g ` G ) e. ( B ^m ( B X. B ) ) ) |
| 17 | 4 | oveq2d | |- ( ( G e. Grp /\ J = { (/) , B } ) -> ( ( J tX J ) Cn J ) = ( ( J tX J ) Cn { (/) , B } ) ) |
| 18 | txtopon | |- ( ( J e. ( TopOn ` B ) /\ J e. ( TopOn ` B ) ) -> ( J tX J ) e. ( TopOn ` ( B X. B ) ) ) |
|
| 19 | 8 8 18 | syl2anc | |- ( ( G e. Grp /\ J = { (/) , B } ) -> ( J tX J ) e. ( TopOn ` ( B X. B ) ) ) |
| 20 | cnindis | |- ( ( ( J tX J ) e. ( TopOn ` ( B X. B ) ) /\ B e. _V ) -> ( ( J tX J ) Cn { (/) , B } ) = ( B ^m ( B X. B ) ) ) |
|
| 21 | 19 5 20 | sylancl | |- ( ( G e. Grp /\ J = { (/) , B } ) -> ( ( J tX J ) Cn { (/) , B } ) = ( B ^m ( B X. B ) ) ) |
| 22 | 17 21 | eqtrd | |- ( ( G e. Grp /\ J = { (/) , B } ) -> ( ( J tX J ) Cn J ) = ( B ^m ( B X. B ) ) ) |
| 23 | 16 22 | eleqtrrd | |- ( ( G e. Grp /\ J = { (/) , B } ) -> ( -g ` G ) e. ( ( J tX J ) Cn J ) ) |
| 24 | 2 11 | istgp2 | |- ( G e. TopGrp <-> ( G e. Grp /\ G e. TopSp /\ ( -g ` G ) e. ( ( J tX J ) Cn J ) ) ) |
| 25 | 3 10 23 24 | syl3anbrc | |- ( ( G e. Grp /\ J = { (/) , B } ) -> G e. TopGrp ) |