This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dip0r.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| dip0r.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| dip0r.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| Assertion | dip0r | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝑍 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dip0r.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | dip0r.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 3 | dip0r.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 4 | 1 2 | nvzcl | ⊢ ( 𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋 ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 𝑍 ∈ 𝑋 ) |
| 6 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 7 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 8 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 9 | 1 6 7 8 3 | ipval2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) → ( 𝐴 𝑃 𝑍 ) = ( ( ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) + ( i · ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) ) ) / 4 ) ) |
| 10 | 5 9 | mpd3an3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝑍 ) = ( ( ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) + ( i · ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) ) ) / 4 ) ) |
| 11 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 12 | 7 2 | nvsz | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) = 𝑍 ) |
| 13 | 11 12 | mpan2 | ⊢ ( 𝑈 ∈ NrmCVec → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) = 𝑍 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) = 𝑍 ) |
| 15 | 14 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) |
| 16 | 15 | fveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) ) |
| 17 | 16 | oveq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) = ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) ↑ 2 ) ) |
| 18 | 17 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) = ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) ↑ 2 ) ) ) |
| 19 | 1 6 7 8 3 | ipval2lem3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) → ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) ↑ 2 ) ∈ ℝ ) |
| 20 | 5 19 | mpd3an3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) ↑ 2 ) ∈ ℝ ) |
| 21 | 20 | recnd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) ↑ 2 ) ∈ ℂ ) |
| 22 | 21 | subidd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) ↑ 2 ) ) = 0 ) |
| 23 | 18 22 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) = 0 ) |
| 24 | negicn | ⊢ - i ∈ ℂ | |
| 25 | 7 2 | nvsz | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - i ∈ ℂ ) → ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) = 𝑍 ) |
| 26 | 24 25 | mpan2 | ⊢ ( 𝑈 ∈ NrmCVec → ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) = 𝑍 ) |
| 27 | ax-icn | ⊢ i ∈ ℂ | |
| 28 | 7 2 | nvsz | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ i ∈ ℂ ) → ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) = 𝑍 ) |
| 29 | 27 28 | mpan2 | ⊢ ( 𝑈 ∈ NrmCVec → ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) = 𝑍 ) |
| 30 | 26 29 | eqtr4d | ⊢ ( 𝑈 ∈ NrmCVec → ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) = ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) = ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) |
| 32 | 31 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) |
| 33 | 32 | fveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ) |
| 34 | 33 | oveq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) = ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) |
| 35 | 34 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) = ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) ) |
| 36 | 1 6 7 8 3 | ipval2lem4 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) ∧ i ∈ ℂ ) → ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 37 | 27 36 | mpan2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) → ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 38 | 5 37 | mpd3an3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 39 | 38 | subidd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) = 0 ) |
| 40 | 35 39 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) = 0 ) |
| 41 | 40 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( i · ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) ) = ( i · 0 ) ) |
| 42 | 23 41 | oveq12d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) + ( i · ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) ) ) = ( 0 + ( i · 0 ) ) ) |
| 43 | it0e0 | ⊢ ( i · 0 ) = 0 | |
| 44 | 43 | oveq2i | ⊢ ( 0 + ( i · 0 ) ) = ( 0 + 0 ) |
| 45 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 46 | 44 45 | eqtri | ⊢ ( 0 + ( i · 0 ) ) = 0 |
| 47 | 42 46 | eqtrdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) + ( i · ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) ) ) = 0 ) |
| 48 | 47 | oveq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) + ( i · ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) ) ) / 4 ) = ( 0 / 4 ) ) |
| 49 | 4cn | ⊢ 4 ∈ ℂ | |
| 50 | 4ne0 | ⊢ 4 ≠ 0 | |
| 51 | 49 50 | div0i | ⊢ ( 0 / 4 ) = 0 |
| 52 | 48 51 | eqtrdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) + ( i · ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) − ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) ↑ 2 ) ) ) ) / 4 ) = 0 ) |
| 53 | 10 52 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝑍 ) = 0 ) |